mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
* Add modified beam search for pruned rnn-t. * Fix style issues. * Update RESULTS.md. * Fix typos. * Minor fixes. * Test the pre-trained model using GitHub actions. * Let the user install optimized_transducer on her own. * Fix errors in GitHub CI.
Introduction
Please refer to https://icefall.readthedocs.io/en/latest/recipes/librispeech/index.html for how to run models in this recipe.
Transducers
There are various folders containing the name transducer
in this folder.
The following table lists the differences among them.
Encoder | Decoder | Comment | |
---|---|---|---|
transducer |
Conformer | LSTM | |
transducer_stateless |
Conformer | Embedding + Conv1d | |
transducer_lstm |
LSTM | LSTM | |
transducer_stateless_multi_datasets |
Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
pruned_transducer_stateless |
Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
The decoder in transducer_stateless
is modified from the paper
Rnn-Transducer with Stateless Prediction Network.
We place an additional Conv1d layer right after the input embedding layer.