icefall/icefall/hooks.py
2022-11-17 09:42:17 -05:00

96 lines
3.5 KiB
Python

# Copyright 2021-2022 Xiaomi Corporation (authors: Zengwei Yao, Daniel Povey)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import torch
from torch import Tensor, nn
def register_inf_check_hooks(model: nn.Module) -> None:
"""Registering forward hook on each module, to check
whether its output tensors is not finite.
Args:
model:
the model to be analyzed.
"""
for name, module in model.named_modules():
if name == "":
name = "<top-level>"
# default param _name is a way to capture the current value of the variable "name".
def forward_hook(_module, _input, _output, _name=name):
if isinstance(_output, Tensor):
if not torch.isfinite(_output.to(torch.float32).sum()):
raise ValueError(
f"The sum of {_name}.output is not finite: {_output}"
)
elif isinstance(_output, tuple):
for i, o in enumerate(_output):
if isinstance(o, tuple):
o = o[0]
if not isinstance(o, Tensor):
continue
if not torch.isfinite(o.to(torch.float32).sum()):
raise ValueError(
f"The sum of {_name}.output[{i}] is not finite: {_output}"
)
# default param _name is a way to capture the current value of the variable "name".
def backward_hook(_module, _input, _output, _name=name):
if isinstance(_output, Tensor):
if not torch.isfinite(_output.to(torch.float32).sum()):
logging.warning(
f"The sum of {_name}.grad is not finite" # ": {_output}"
)
elif isinstance(_output, tuple):
for i, o in enumerate(_output):
if isinstance(o, tuple):
o = o[0]
if not isinstance(o, Tensor):
continue
if not torch.isfinite(o.to(torch.float32).sum()):
logging.warning(f"The sum of {_name}.grad[{i}] is not finite")
module.register_forward_hook(forward_hook)
module.register_backward_hook(backward_hook)
for name, parameter in model.named_parameters():
def param_backward_hook(grad, _name=name):
if not torch.isfinite(grad.to(torch.float32).sum()):
logging.warning(f"The sum of {_name}.param_grad is not finite")
parameter.register_hook(param_backward_hook)
def _test_inf_check_hooks():
model = nn.Sequential(nn.Linear(100, 50), nn.Linear(50, 80))
register_inf_check_hooks(model)
for _ in range(10):
T = random.randint(200, 300)
x = torch.randn(T, 100) + float("inf") * (T % 2)
y = model(x)
y.sum().backward()
if __name__ == "__main__":
_test_inf_check_hooks()