mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
186 lines
5.8 KiB
Python
Executable File
186 lines
5.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import sentencepiece as spm
|
|
import torch
|
|
from filter_cuts import filter_cuts
|
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
from icefall.utils import get_executor, str2bool
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
help="""Path to the bpe.model. If not None, we will remove short and
|
|
long utterances before extracting features""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
help="""Dataset parts to compute fbank. If None, we will use all""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--perturb-speed",
|
|
type=str2bool,
|
|
default=True,
|
|
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
|
)
|
|
parser.add_argument(
|
|
"--data-dir",
|
|
type=str,
|
|
default="data",
|
|
help="""Path of data directory""",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compute_fbank_speechtools(
|
|
bpe_model: Optional[str] = None,
|
|
dataset: Optional[str] = None,
|
|
perturb_speed: Optional[bool] = False,
|
|
data_dir: Optional[str] = "data",
|
|
):
|
|
src_dir = Path(data_dir) / "manifests"
|
|
output_dir = Path(data_dir) / "fbank"
|
|
num_jobs = min(4, os.cpu_count())
|
|
num_mel_bins = 80
|
|
|
|
if bpe_model:
|
|
logging.info(f"Loading {bpe_model}")
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(bpe_model)
|
|
|
|
if dataset is None:
|
|
dataset_parts = (
|
|
"train",
|
|
"dev",
|
|
"eval_clean",
|
|
"eval_other",
|
|
)
|
|
else:
|
|
dataset_parts = dataset.split(" ", -1)
|
|
|
|
prefix = "ksponspeech"
|
|
suffix = "jsonl.gz"
|
|
logging.info(f"Read manifests...")
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=dataset_parts,
|
|
output_dir=src_dir,
|
|
prefix=prefix,
|
|
suffix=suffix,
|
|
)
|
|
assert manifests is not None
|
|
|
|
assert len(manifests) == len(dataset_parts), (
|
|
len(manifests),
|
|
len(dataset_parts),
|
|
list(manifests.keys()),
|
|
dataset_parts,
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
# Use cuda for fbank compute
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
logging.info(f"Device: {device}")
|
|
|
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins, device=device))
|
|
|
|
with get_executor() as ex: # Initialize the executor only once.
|
|
logging.info(f"Executor: {ex}")
|
|
for partition, m in manifests.items():
|
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
|
if (output_dir / cuts_filename).is_file():
|
|
logging.info(f"{partition} already exists - skipping.")
|
|
continue
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
|
|
# Filter duration
|
|
cut_set = cut_set.filter(
|
|
lambda x: x.duration > 1 and x.sampling_rate == 16000
|
|
)
|
|
|
|
if "train" in partition:
|
|
if bpe_model:
|
|
cut_set = filter_cuts(cut_set, sp)
|
|
if perturb_speed:
|
|
logging.info(f"Doing speed perturb")
|
|
cut_set = (
|
|
cut_set
|
|
+ cut_set.perturb_speed(0.9)
|
|
+ cut_set.perturb_speed(1.1)
|
|
)
|
|
logging.info(f"Compute & Store features...")
|
|
if device == "cuda":
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
num_workers=4,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
else:
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
# when an executor is specified, make more partitions
|
|
num_jobs=num_jobs if ex is None else 80,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(output_dir / cuts_filename)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
compute_fbank_speechtools(
|
|
bpe_model=args.bpe_model,
|
|
dataset=args.dataset,
|
|
perturb_speed=args.perturb_speed,
|
|
data_dir=args.data_dir,
|
|
)
|