icefall/egs/ljspeech/tts/local/split_subsets.py
2023-10-28 21:16:43 +08:00

81 lines
2.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script split the LJSpeech dataset cuts into three sets:
- training, 12500
- validation, 100
- test, 500
The numbers are from https://arxiv.org/pdf/2106.06103.pdf
Usage example:
python3 ./local/split_subsets.py ./data/spectrogram
"""
import argparse
import logging
import random
from pathlib import Path
from lhotse import load_manifest_lazy
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"manifest_dir",
type=Path,
default=Path("data/spectrogram"),
help="Path to the manifest file",
)
return parser.parse_args()
def main():
args = get_args()
manifest_dir = Path(args.manifest_dir)
prefix = "ljspeech"
suffix = "jsonl.gz"
# all_cuts = load_manifest_lazy(manifest_dir / f"{prefix}_cuts_all.{suffix}")
all_cuts = load_manifest_lazy(manifest_dir / f"{prefix}_cuts_all_phonemized.{suffix}")
cut_ids = list(all_cuts.ids)
random.shuffle(cut_ids)
train_cuts = all_cuts.subset(cut_ids=cut_ids[:12500])
valid_cuts = all_cuts.subset(cut_ids=cut_ids[12500:12500 + 100])
test_cuts = all_cuts.subset(cut_ids=cut_ids[12500 + 100:])
assert len(train_cuts) == 12500, "expected 12500 cuts for training but got len(train_cuts)"
assert len(valid_cuts) == 100, "expected 100 cuts but for validation but got len(valid_cuts)"
assert len(test_cuts) == 500, "expected 500 cuts for test but got len(test_cuts)"
train_cuts.to_file(manifest_dir / f"{prefix}_cuts_train.{suffix}")
valid_cuts.to_file(manifest_dir / f"{prefix}_cuts_valid.{suffix}")
test_cuts.to_file(manifest_dir / f"{prefix}_cuts_test.{suffix}")
logging.info("Splitted into three sets: training (12500), validation (100), and test (500)")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()