icefall/egs/mls/ASR/local/compute_fbank_mls.py
2024-02-27 18:03:15 +08:00

138 lines
4.1 KiB
Python

#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the LibriSpeech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
import sentencepiece as spm
import torch
from filter_cuts import filter_cuts
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--manifest-dir",
type=str,
default="data/manifests",
)
parser.add_argument(
"--fbank-dir",
type=str,
default="data/fbank_mls",
)
parser.add_argument(
"--part",
type=str,
help="Which language to prepare, if all, prepare all languages",
choices=["english", "dutch", "german", "spanish", "french", "italian", "polish", "portuguese", "all"]
)
return parser.parse_args()
def compute_fbank_mls(
manifest_dir=str,
fbank_dir=str,
part=str,
):
src_dir = Path("data/manifests")
output_dir = Path(fbank_dir)
num_jobs = min(15, os.cpu_count())
num_mel_bins = 80
if part == "all":
dataset_parts = [
"english",
"dutch",
"german",
"spanish"
]
else:
dataset_parts = [part]
splits = ["train", "test", "dev"]
num_jobs = 15
num_mel_bins = 80
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
for language in dataset_parts:
for split in splits:
recording_file = src_dir / f"mls-{language}_recordings_{split}.jsonl.gz"
supervision_file = src_dir / f"mls-{language}_supervisions_{split}.jsonl.gz"
recordings = CutSet.from_file(recording_file)
supervisions = CutSet.from_file(supervision_file)
cut_set = CutSet.from_manifests(
recordings=recordings,
supervisions=supervisions,
)
prefix = f"mls-{language}"
with get_executor() as ex:
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{split}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cuts_filename = output_dir / f"mls-{language}_{split}.jsonl.gz"
logging.info(f"Saving to {cuts_filename}")
cut_set.to_file(cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_mls(
manifest_dir=args.manifest_dir,
fbank_dir=args.fbank_dir,
part=args.part,
)