mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 02:22:17 +00:00
* Fix torch.nn.Embedding error for torch below 1.8.0 * Changes to fbank computation, use lilcom chunky writer * Add min in q,k,v of attention * Remove learnable offset, use relu instead. * Experiments based on SpecAugment change * Merge specaug change from Mingshuang. * Use much more aggressive SpecAug setup * Fix to num_feature_masks bug I introduced; reduce max_frames_mask_fraction 0.4->0.3 * Change p=0.5->0.9, mask_fraction 0.3->0.2 * Change p=0.9 to p=0.8 in SpecAug * Fix num_time_masks code; revert 0.8 to 0.9 * Change max_frames from 0.2 to 0.15 * Remove ReLU in attention * Adding diagnostics code... * Refactor/simplify ConformerEncoder * First version of rand-combine iterated-training-like idea. * Improvements to diagnostics (RE those with 1 dim * Add pelu to this good-performing setup.. * Small bug fixes/imports * Add baseline for the PeLU expt, keeping only the small normalization-related changes. * pelu_base->expscale, add 2xExpScale in subsampling, and in feedforward units. * Double learning rate of exp-scale units * Combine ExpScale and swish for memory reduction * Add import * Fix backprop bug * Fix bug in diagnostics * Increase scale on Scale from 4 to 20 * Increase scale from 20 to 50. * Fix duplicate Swish; replace norm+swish with swish+exp-scale in convolution module * Reduce scale from 50 to 20 * Add deriv-balancing code * Double the threshold in brelu; slightly increase max_factor. * Fix exp dir * Convert swish nonlinearities to ReLU * Replace relu with swish-squared. * Restore ConvolutionModule to state before changes; change all Swish,Swish(Swish) to SwishOffset. * Replace norm on input layer with scale of 0.1. * Extensions to diagnostics code * Update diagnostics * Add BasicNorm module * Replace most normalizations with scales (still have norm in conv) * Change exp dir * Replace norm in ConvolutionModule with a scaling factor. * use nonzero threshold in DerivBalancer * Add min-abs-value 0.2 * Fix dirname * Change min-abs threshold from 0.2 to 0.5 * Scale up pos_bias_u and pos_bias_v before use. * Reduce max_factor to 0.01 * Fix q*scaling logic * Change max_factor in DerivBalancer from 0.025 to 0.01; fix scaling code. * init 1st conv module to smaller variance * Change how scales are applied; fix residual bug * Reduce min_abs from 0.5 to 0.2 * Introduce in_scale=0.5 for SwishExpScale * Fix scale from 0.5 to 2.0 as I really intended.. * Set scaling on SwishExpScale * Add identity pre_norm_final for diagnostics. * Add learnable post-scale for mha * Fix self.post-scale-mha * Another rework, use scales on linear/conv * Change dir name * Reduce initial scaling of modules * Bug-fix RE bias * Cosmetic change * Reduce initial_scale. * Replace ExpScaleRelu with DoubleSwish() * DoubleSwish fix * Use learnable scales for joiner and decoder * Add max-abs-value constraint in DerivBalancer * Add max-abs-value * Change dir name * Remove ExpScale in feedforward layes. * Reduce max-abs limit from 1000 to 100; introduce 2 DerivBalancer modules in conv layer. * Make DoubleSwish more memory efficient * Reduce constraints from deriv-balancer in ConvModule. * Add warmup mode * Remove max-positive constraint in deriv-balancing; add second DerivBalancer in conv module. * Add some extra info to diagnostics * Add deriv-balancer at output of embedding. * Add more stats. * Make epsilon in BasicNorm learnable, optionally. * Draft of 0mean changes.. * Rework of initialization * Fix typo * Remove dead code * Modifying initialization from normal->uniform; add initial_scale when initializing * bug fix re sqrt * Remove xscale from pos_embedding * Remove some dead code. * Cosmetic changes/renaming things * Start adding some files.. * Add more files.. * update decode.py file type * Add remaining files in pruned_transducer_stateless2 * Fix diagnostics-getting code * Scale down pruned loss in warmup mode * Reduce warmup scale on pruned loss form 0.1 to 0.01. * Remove scale_speed, make swish deriv more efficient. * Cosmetic changes to swish * Double warm_step * Fix bug with import * Change initial std from 0.05 to 0.025. * Set also scale for embedding to 0.025. * Remove logging code that broke with newer Lhotse; fix bug with pruned_loss * Add norm+balancer to VggSubsampling * Incorporate changes from master into pruned_transducer_stateless2. * Add max-abs=6, debugged version * Change 0.025,0.05 to 0.01 in initializations * Fix balancer code * Whitespace fix * Reduce initial pruned_loss scale from 0.01 to 0.0 * Increase warm_step (and valid_interval) * Change max-abs from 6 to 10 * Change how warmup works. * Add changes from master to decode.py, train.py * Simplify the warmup code; max_abs 10->6 * Make warmup work by scaling layer contributions; leave residual layer-drop * Fix bug * Fix test mode with random layer dropout * Add random-number-setting function in dataloader * Fix/patch how fix_random_seed() is imported. * Reduce layer-drop prob * Reduce layer-drop prob after warmup to 1 in 100 * Change power of lr-schedule from -0.5 to -0.333 * Increase model_warm_step to 4k * Change max-keep-prob to 0.95 * Refactoring and simplifying conformer and frontend * Rework conformer, remove some code. * Reduce 1st conv channels from 64 to 32 * Add another convolutional layer * Fix padding bug * Remove dropout in output layer * Reduce speed of some components * Initial refactoring to remove unnecessary vocab_size * Fix RE identity * Bug-fix * Add final dropout to conformer * Remove some un-used code * Replace nn.Linear with ScaledLinear in simple joiner * Make 2 projections.. * Reduce initial_speed * Use initial_speed=0.5 * Reduce initial_speed further from 0.5 to 0.25 * Reduce initial_speed from 0.5 to 0.25 * Change how warmup is applied. * Bug fix to warmup_scale * Fix test-mode * Remove final dropout * Make layer dropout rate 0.075, was 0.1. * First draft of model rework * Various bug fixes * Change learning speed of simple_lm_proj * Revert transducer_stateless/ to state in upstream/master * Fix to joiner to allow different dims * Some cleanups * Make training more efficient, avoid redoing some projections. * Change how warm-step is set * First draft of new approach to learning rates + init * Some fixes.. * Change initialization to 0.25 * Fix type of parameter * Fix weight decay formula by adding 1/1-beta * Fix weight decay formula by adding 1/1-beta * Fix checkpoint-writing * Fix to reading scheudler from optim * Simplified optimizer, rework somet things.. * Reduce model_warm_step from 4k to 3k * Fix bug in lambda * Bug-fix RE sign of target_rms * Changing initial_speed from 0.25 to 01 * Change some defaults in LR-setting rule. * Remove initial_speed * Set new scheduler * Change exponential part of lrate to be epoch based * Fix bug * Set 2n rule.. * Implement 2o schedule * Make lrate rule more symmetric * Implement 2p version of learning rate schedule. * Refactor how learning rate is set. * Fix import * Modify init (#301) * update icefall/__init__.py to import more common functions. * update icefall/__init__.py * make imports style consistent. * exclude black check for icefall/__init__.py in pyproject.toml. * Minor fixes for logging (#296) * Minor fixes for logging * Minor fix * Fix dir names * Modify beam search to be efficient with current joienr * Fix adding learning rate to tensorboard * Fix docs in optim.py * Support mix precision training on the reworked model (#305) * Add mix precision support * Minor fixes * Minor fixes * Minor fixes * Tedlium3 pruned transducer stateless (#261) * update tedlium3-pruned-transducer-stateless-codes * update README.md * update README.md * add fast beam search for decoding * do a change for RESULTS.md * do a change for RESULTS.md * do a fix * do some changes for pruned RNN-T * Add mix precision support * Minor fixes * Minor fixes * Updating RESULTS.md; fix in beam_search.py * Fix rebase * Code style check for librispeech pruned transducer stateless2 (#308) * Update results for tedlium3 pruned RNN-T (#307) * Update README.md * Fix CI errors. (#310) * Add more results * Fix tensorboard log location * Add one more epoch of full expt * fix comments * Add results for mixed precision with max-duration 300 * Changes for pretrained.py (tedlium3 pruned RNN-T) (#311) * GigaSpeech recipe (#120) * initial commit * support download, data prep, and fbank * on-the-fly feature extraction by default * support BPE based lang * support HLG for BPE * small fix * small fix * chunked feature extraction by default * Compute features for GigaSpeech by splitting the manifest. * Fixes after review. * Split manifests into 2000 pieces. * set audio duration mismatch tolerance to 0.01 * small fix * add conformer training recipe * Add conformer.py without pre-commit checking * lazy loading and use SingleCutSampler * DynamicBucketingSampler * use KaldifeatFbank to compute fbank for musan * use pretrained language model and lexicon * use 3gram to decode, 4gram to rescore * Add decode.py * Update .flake8 * Delete compute_fbank_gigaspeech.py * Use BucketingSampler for valid and test dataloader * Update params in train.py * Use bpe_500 * update params in decode.py * Decrease num_paths while CUDA OOM * Added README * Update RESULTS * black * Decrease num_paths while CUDA OOM * Decode with post-processing * Update results * Remove lazy_load option * Use default `storage_type` * Keep the original tolerance * Use split-lazy * black * Update pretrained model Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * Add LG decoding (#277) * Add LG decoding * Add log weight pushing * Minor fixes * Support computing RNN-T loss with torchaudio (#316) * Support modified beam search decoding for streaming inference with Emformer model. * Formatted imports. * Update results for torchaudio RNN-T. (#322) * Fixed streaming decoding codes for emformer model. * Fixed docs. * Sorted imports for transducer_emformer/streaming_feature_extractor.py * Minor fix for transducer_emformer/streaming_feature_extractor.py Co-authored-by: pkufool <wkang@pku.org.cn> Co-authored-by: Daniel Povey <dpovey@gmail.com> Co-authored-by: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> Co-authored-by: Guo Liyong <guonwpu@qq.com> Co-authored-by: Wang, Guanbo <wgb14@outlook.com>
427 lines
12 KiB
Python
427 lines
12 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
# 2022 Xiaomi Crop. (authors: Mingshuang Luo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
(1) greedy search
|
|
./pruned_transducer_stateless/pretrained.py \
|
|
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
--method greedy_search \
|
|
--max-sym-per-frame 1 \
|
|
/path/to/foo.wav \
|
|
/path/to/bar.wav
|
|
|
|
(2) beam search
|
|
./pruned_transducer_stateless/pretrained.py \
|
|
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
--method beam_search \
|
|
--beam-size 4 \
|
|
/path/to/foo.wav \
|
|
/path/to/bar.wav
|
|
|
|
(3) modified beam search
|
|
./pruned_transducer_stateless/pretrained.py \
|
|
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
--method modified_beam_search \
|
|
--beam-size 4 \
|
|
/path/to/foo.wav \
|
|
/path/to/bar.wav
|
|
|
|
(4) fast beam search
|
|
./pruned_transducer_stateless/pretrained.py \
|
|
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
--method fast_beam_search \
|
|
--beam 4 \
|
|
--max-contexts 4 \
|
|
--max-states 8 \
|
|
/path/to/foo.wav \
|
|
/path/to/bar.wav
|
|
|
|
You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
|
|
|
|
Note: ./pruned_transducer_stateless/exp/pretrained.pt is generated by
|
|
./pruned_transducer_stateless/export.py
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from typing import List
|
|
|
|
import k2
|
|
import kaldifeat
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchaudio
|
|
from beam_search import (
|
|
beam_search,
|
|
fast_beam_search,
|
|
greedy_search,
|
|
greedy_search_batch,
|
|
modified_beam_search,
|
|
)
|
|
from conformer import Conformer
|
|
from decoder import Decoder
|
|
from joiner import Joiner
|
|
from model import Transducer
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
from icefall.env import get_env_info
|
|
from icefall.utils import AttributeDict
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the checkpoint. "
|
|
"The checkpoint is assumed to be saved by "
|
|
"icefall.checkpoint.save_checkpoint().",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
help="""Path to bpe.model.
|
|
Used only when method is ctc-decoding.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- beam_search
|
|
- modified_beam_search
|
|
- fast_beam_search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=4,
|
|
help="Used only when --method is beam_search and modified_beam_search ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam",
|
|
type=float,
|
|
default=4,
|
|
help="""A floating point value to calculate the cutoff score during beam
|
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
`beam` in Kaldi.
|
|
Used only when --decoding-method is fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-contexts",
|
|
type=int,
|
|
default=4,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-states",
|
|
type=int,
|
|
default=8,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; "
|
|
"2 means tri-gram",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-sym-per-frame",
|
|
type=int,
|
|
default=1,
|
|
help="""Maximum number of symbols per frame. Used only when
|
|
--method is greedy_search.
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
"sample_rate": 16000,
|
|
# parameters for conformer
|
|
"feature_dim": 80,
|
|
"subsampling_factor": 4,
|
|
"attention_dim": 512,
|
|
"nhead": 8,
|
|
"dim_feedforward": 2048,
|
|
"num_encoder_layers": 12,
|
|
"vgg_frontend": False,
|
|
# parameters for decoder
|
|
"embedding_dim": 512,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
encoder = Conformer(
|
|
num_features=params.feature_dim,
|
|
output_dim=params.vocab_size,
|
|
subsampling_factor=params.subsampling_factor,
|
|
d_model=params.attention_dim,
|
|
nhead=params.nhead,
|
|
dim_feedforward=params.dim_feedforward,
|
|
num_encoder_layers=params.num_encoder_layers,
|
|
vgg_frontend=params.vgg_frontend,
|
|
)
|
|
return encoder
|
|
|
|
|
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
decoder = Decoder(
|
|
vocab_size=params.vocab_size,
|
|
embedding_dim=params.embedding_dim,
|
|
blank_id=params.blank_id,
|
|
unk_id=params.unk_id,
|
|
context_size=params.context_size,
|
|
)
|
|
return decoder
|
|
|
|
|
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
joiner = Joiner(
|
|
input_dim=params.vocab_size,
|
|
inner_dim=params.embedding_dim,
|
|
output_dim=params.vocab_size,
|
|
)
|
|
return joiner
|
|
|
|
|
|
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
encoder = get_encoder_model(params)
|
|
decoder = get_decoder_model(params)
|
|
joiner = get_joiner_model(params)
|
|
|
|
model = Transducer(
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
joiner=joiner,
|
|
)
|
|
return model
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert sample_rate == expected_sample_rate, (
|
|
f"expected sample rate: {expected_sample_rate}. "
|
|
f"Given: {sample_rate}"
|
|
)
|
|
# We use only the first channel
|
|
ans.append(wave[0])
|
|
return ans
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
params = get_params()
|
|
|
|
params.update(vars(args))
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(f"{params}")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
logging.info("Creating model")
|
|
model = get_transducer_model(params)
|
|
|
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
model.load_state_dict(checkpoint["model"], strict=False)
|
|
model.to(device)
|
|
model.eval()
|
|
model.device = device
|
|
|
|
if params.decoding_method == "fast_beam_search":
|
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
else:
|
|
decoding_graph = None
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = params.sample_rate
|
|
opts.mel_opts.num_bins = params.feature_dim
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
logging.info(f"Reading sound files: {params.sound_files}")
|
|
waves = read_sound_files(
|
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
)
|
|
waves = [w.to(device) for w in waves]
|
|
|
|
logging.info("Decoding started")
|
|
features = fbank(waves)
|
|
feature_lengths = [f.size(0) for f in features]
|
|
|
|
features = pad_sequence(
|
|
features, batch_first=True, padding_value=math.log(1e-10)
|
|
)
|
|
|
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
|
|
with torch.no_grad():
|
|
encoder_out, encoder_out_lens = model.encoder(
|
|
x=features, x_lens=feature_lengths
|
|
)
|
|
|
|
hyps = []
|
|
msg = f"Using {params.decoding_method}"
|
|
logging.info(msg)
|
|
|
|
if params.decoding_method == "fast_beam_search":
|
|
hyp_tokens = fast_beam_search(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
elif (
|
|
params.decoding_method == "greedy_search"
|
|
and params.max_sym_per_frame == 1
|
|
):
|
|
hyp_tokens = greedy_search_batch(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
elif params.decoding_method == "modified_beam_search":
|
|
hyp_tokens = modified_beam_search(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
beam=params.beam_size,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
else:
|
|
batch_size = encoder_out.size(0)
|
|
|
|
for i in range(batch_size):
|
|
# fmt: off
|
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
# fmt: on
|
|
if params.decoding_method == "greedy_search":
|
|
hyp = greedy_search(
|
|
model=model,
|
|
encoder_out=encoder_out_i,
|
|
max_sym_per_frame=params.max_sym_per_frame,
|
|
)
|
|
elif params.decoding_method == "beam_search":
|
|
hyp = beam_search(
|
|
model=model,
|
|
encoder_out=encoder_out_i,
|
|
beam=params.beam_size,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported decoding method: {params.decoding_method}"
|
|
)
|
|
hyps.append(sp.decode(hyp).split())
|
|
|
|
s = "\n"
|
|
for filename, hyp in zip(params.sound_files, hyps):
|
|
words = " ".join(hyp)
|
|
s += f"{filename}:\n{words}\n\n"
|
|
logging.info(s)
|
|
|
|
logging.info("Decoding Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|