icefall/icefall/rnn_lm/compute_perplexity.py
Fangjun Kuang 2bca7032af
Update RNNLM training scripts (#720)
* Update RNNLM training scripts

* Fix a typo

* Fix CI
2022-12-01 15:57:43 +08:00

238 lines
5.9 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./rnn_lm/compute_perplexity.py \
--epoch 4 \
--avg 2 \
--lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt
"""
import argparse
import logging
import math
from pathlib import Path
import torch
from dataset import get_dataloader
from model import RnnLmModel
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.utils import AttributeDict, setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=49,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=20,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="rnn_lm/exp",
help="The experiment dir",
)
parser.add_argument(
"--lm-data",
type=str,
help="Path to the LM test data for computing perplexity",
)
parser.add_argument(
"--vocab-size",
type=int,
default=500,
help="Vocabulary size of the model",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=2048,
help="Embedding dim of the model",
)
parser.add_argument(
"--hidden-dim",
type=int,
default=2048,
help="Hidden dim of the model",
)
parser.add_argument(
"--num-layers",
type=int,
default=3,
help="Number of RNN layers the model",
)
parser.add_argument(
"--tie-weights",
type=str2bool,
default=False,
help="""True to share the weights between the input embedding layer and the
last output linear layer
""",
)
parser.add_argument(
"--batch-size",
type=int,
default=50,
help="Number of RNN layers the model",
)
parser.add_argument(
"--max-sent-len",
type=int,
default=100,
help="Number of RNN layers the model",
)
parser.add_argument(
"--sos-id",
type=int,
default=1,
help="SOS ID",
)
parser.add_argument(
"--eos-id",
type=int,
default=1,
help="EOS ID",
)
parser.add_argument(
"--blank-id",
type=int,
default=0,
help="Blank ID",
)
return parser
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lm_data = Path(args.lm_data)
params = AttributeDict(vars(args))
setup_logger(f"{params.exp_dir}/log-ppl/")
logging.info("Computing perplexity started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
logging.info("About to create model")
model = RnnLmModel(
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
hidden_dim=params.hidden_dim,
num_layers=params.num_layers,
tie_weights=params.tie_weights,
)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
model.to(device)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
num_param_requires_grad = sum(
[p.numel() for p in model.parameters() if p.requires_grad]
)
logging.info(f"Number of model parameters: {num_param}")
logging.info(
f"Number of model parameters (requires_grad): "
f"{num_param_requires_grad} "
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
)
logging.info(f"Loading LM test data from {params.lm_data}")
test_dl = get_dataloader(
filename=params.lm_data,
is_distributed=False,
params=params,
)
tot_loss = 0.0
num_tokens = 0
num_sentences = 0
for batch_idx, batch in enumerate(test_dl):
x, y, sentence_lengths = batch
x = x.to(device)
y = y.to(device)
sentence_lengths = sentence_lengths.to(device)
nll = model(x, y, sentence_lengths)
loss = nll.sum().cpu().item()
tot_loss += loss
num_tokens += sentence_lengths.sum().cpu().item()
num_sentences += x.size(0)
ppl = math.exp(tot_loss / num_tokens)
logging.info(
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()