mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
* Add modified transducer for aishell. * Minor fixes. * Add extra data in transducer training. The extra data is from http://www.openslr.org/62/ * Update export.py and pretrained.py * Update CI to install pretrained models with aishell. * Update results. * Update results. * Update README. * Use symlinks to avoid copies.
73 lines
2.1 KiB
Python
Executable File
73 lines
2.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
from lhotse import CutSet
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
|
|
def preprocess_aidatatang_200zh():
|
|
src_dir = Path("data/manifests/aidatatang_200zh")
|
|
output_dir = Path("data/fbank/aidatatang_200zh")
|
|
output_dir.mkdir(exist_ok=True, parents=True)
|
|
|
|
dataset_parts = (
|
|
"train",
|
|
"test",
|
|
"dev",
|
|
)
|
|
|
|
logging.info("Loading manifest")
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=dataset_parts,
|
|
output_dir=src_dir,
|
|
)
|
|
assert len(manifests) > 0
|
|
|
|
for partition, m in manifests.items():
|
|
logging.info(f"Processing {partition}")
|
|
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
|
|
if raw_cuts_path.is_file():
|
|
logging.info(f"{partition} already exists - skipping")
|
|
continue
|
|
|
|
for sup in m["supervisions"]:
|
|
sup.custom = {"origin": "aidatatang_200zh"}
|
|
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
|
|
logging.info(f"Saving to {raw_cuts_path}")
|
|
cut_set.to_file(raw_cuts_path)
|
|
|
|
|
|
def main():
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
preprocess_aidatatang_200zh()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|