icefall/icefall/graph_compiler.py
Piotr Żelasko f0f35e6671 black
2022-01-21 17:22:41 -05:00

150 lines
4.8 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import k2
import torch
from icefall.lexicon import Lexicon
class CtcTrainingGraphCompiler(object):
def __init__(
self,
lexicon: Lexicon,
device: torch.device,
oov: str = "<UNK>",
):
"""
Args:
lexicon:
It is built from `data/lang/lexicon.txt`.
device:
The device to use for operations compiling transcripts to FSAs.
oov:
Out of vocabulary word. When a word in the transcript
does not exist in the lexicon, it is replaced with `oov`.
"""
L_inv = lexicon.L_inv.to(device)
assert L_inv.requires_grad is False
assert oov in lexicon.word_table
self.L_inv = k2.arc_sort(L_inv)
self.oov_id = lexicon.word_table[oov]
self.word_table = lexicon.word_table
max_token_id = max(lexicon.tokens)
ctc_topo = k2.ctc_topo(max_token_id, modified=False)
self.ctc_topo = ctc_topo.to(device)
self.device = device
def compile(self, texts: List[str]) -> k2.Fsa:
"""Build decoding graphs by composing ctc_topo with
given transcripts.
Args:
texts:
A list of strings. Each string contains a sentence for an utterance.
A sentence consists of spaces separated words. An example `texts`
looks like:
['hello icefall', 'CTC training with k2']
Returns:
An FsaVec, the composition result of `self.ctc_topo` and the
transcript FSA.
"""
transcript_fsa = self.convert_transcript_to_fsa(texts)
# NOTE: k2.compose runs on CUDA only when treat_epsilons_specially
# is False, so we add epsilon self-loops here
fsa_with_self_loops = k2.remove_epsilon_and_add_self_loops(
transcript_fsa
)
fsa_with_self_loops = k2.arc_sort(fsa_with_self_loops)
decoding_graph = k2.compose(
self.ctc_topo, fsa_with_self_loops, treat_epsilons_specially=False
)
assert decoding_graph.requires_grad is False
return decoding_graph
def texts_to_ids(self, texts: List[str]) -> List[List[int]]:
"""Convert a list of texts to a list-of-list of word IDs.
Args:
texts:
It is a list of strings. Each string consists of space(s)
separated words. An example containing two strings is given below:
['HELLO ICEFALL', 'HELLO k2']
Returns:
Return a list-of-list of word IDs.
"""
word_ids_list = []
for text in texts:
word_ids = []
for word in text.split():
if word in self.word_table:
word_ids.append(self.word_table[word])
else:
word_ids.append(self.oov_id)
word_ids_list.append(word_ids)
return word_ids_list
def convert_transcript_to_fsa(self, texts: List[str]) -> k2.Fsa:
"""Convert a list of transcript texts to an FsaVec.
Args:
texts:
A list of strings. Each string contains a sentence for an utterance.
A sentence consists of spaces separated words. An example `texts`
looks like:
['hello icefall', 'CTC training with k2']
Returns:
Return an FsaVec, whose `shape[0]` equals to `len(texts)`.
"""
word_ids_list = []
for text in texts:
word_ids = []
for word in text.split():
if word in self.word_table:
word_ids.append(self.word_table[word])
else:
word_ids.append(self.oov_id)
word_ids_list.append(word_ids)
word_fsa = k2.linear_fsa(word_ids_list, self.device)
word_fsa_with_self_loops = k2.add_epsilon_self_loops(word_fsa)
fsa = k2.intersect(
self.L_inv, word_fsa_with_self_loops, treat_epsilons_specially=False
)
# fsa has word ID as labels and token ID as aux_labels, so
# we need to invert it
ans_fsa = fsa.invert_()
return k2.arc_sort(ans_fsa)