mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 02:34:21 +00:00
266 lines
7.5 KiB
Python
Executable File
266 lines
7.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
|
|
from icefall.env import get_env_info
|
|
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
store_transcripts,
|
|
write_error_stats,
|
|
)
|
|
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="ctc_greedy_search",
|
|
help="Decoding method.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="conformer_ctc/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
# parameters for conformer
|
|
"subsampling_factor": 4,
|
|
"vgg_frontend": False,
|
|
"use_feat_batchnorm": True,
|
|
"feature_dim": 80,
|
|
"nhead": 8,
|
|
"attention_dim": 512,
|
|
"num_decoder_layers": 6,
|
|
# parameters for decoding
|
|
"search_beam": 20,
|
|
"output_beam": 8,
|
|
"min_active_states": 30,
|
|
"max_active_states": 10000,
|
|
"use_double_scores": True,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
model: nn.Module,
|
|
processor,
|
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
model:
|
|
The neural model.
|
|
|
|
Returns:
|
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
|
Its value is a list of tuples. Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
results = []
|
|
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
supervisions = batch["supervisions"]
|
|
# MVN
|
|
inputs = processor(
|
|
batch["inputs"],
|
|
sampling_rate=16000,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
)
|
|
feature = inputs["input_values"].squeeze(0)
|
|
B, T = feature.shape
|
|
num_samples = supervisions["num_samples"]
|
|
mask = torch.arange(0, T).expand(B, T) < num_samples.reshape([-1, 1])
|
|
mask = mask.to(model.device)
|
|
feature = feature.to(model.device)
|
|
memory_embeddings = model.wav2vec2(feature, mask)[0]
|
|
logits = model.lm_head(memory_embeddings)
|
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|
hyps = processor.batch_decode(predicted_ids)
|
|
|
|
texts = batch["supervisions"]["text"]
|
|
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
assert len(hyps) == len(texts)
|
|
|
|
for hyp_text, ref_text in zip(hyps, texts):
|
|
ref_words = ref_text.split()
|
|
hyp_words = hyp_text.split()
|
|
this_batch.append((ref_words, hyp_words))
|
|
|
|
results["ctc_greedy_search"].extend(this_batch)
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % 20 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(
|
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
)
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = (
|
|
params.exp_dir / f"wav2vec2-recogs-{test_set_name}-{key}.txt"
|
|
)
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = (
|
|
params.exp_dir / f"wav2vec2-errs-{test_set_name}-{key}.txt"
|
|
)
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info(
|
|
"Wrote detailed error stats to {}".format(errs_filename)
|
|
)
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = params.exp_dir / f"wav2vec2-wer-summary-{test_set_name}.txt"
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
# args.lang_dir = Path(args.lang_dir)
|
|
# args.lm_dir = Path(args.lm_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
|
logging.info("Decoding started")
|
|
logging.info(params)
|
|
|
|
# lexicon = Lexicon(params.lang_dir)
|
|
# max_token_id = max(lexicon.tokens)
|
|
# num_classes = max_token_id + 1 # +1 for the blank
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = Wav2Vec2ForCTC.from_pretrained(
|
|
"facebook/wav2vec2-large-960h-lv60-self"
|
|
).to("cuda")
|
|
processor = Wav2Vec2Processor.from_pretrained(
|
|
"facebook/wav2vec2-large-960h-lv60-self"
|
|
)
|
|
model.to(device)
|
|
model.eval()
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
librispeech = LibriSpeechAsrDataModule(args)
|
|
# CAUTION: `test_sets` is for displaying only.
|
|
# If you want to skip test-clean, you have to skip
|
|
# it inside the for loop. That is, use
|
|
#
|
|
# if test_set == 'test-clean': continue
|
|
#
|
|
test_sets = ["test-clean", "test-other"]
|
|
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
model=model,
|
|
processor=processor,
|
|
)
|
|
|
|
save_results(
|
|
params=params, test_set_name=test_set, results_dict=results_dict
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|