2021-12-23 19:30:19 +08:00

266 lines
7.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
write_error_stats,
)
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--method",
type=str,
default="ctc_greedy_search",
help="Decoding method.",
)
parser.add_argument(
"--exp-dir",
type=str,
default="conformer_ctc/exp",
help="The experiment dir",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"subsampling_factor": 4,
"vgg_frontend": False,
"use_feat_batchnorm": True,
"feature_dim": 80,
"nhead": 8,
"attention_dim": 512,
"num_decoder_layers": 6,
# parameters for decoding
"search_beam": 20,
"output_beam": 8,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
"env_info": get_env_info(),
}
)
return params
def decode_dataset(
dl: torch.utils.data.DataLoader,
model: nn.Module,
processor,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
model:
The neural model.
Returns:
Return a dict, whose key may be "no-rescore" if no LM rescoring
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
results = []
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
supervisions = batch["supervisions"]
# MVN
inputs = processor(
batch["inputs"],
sampling_rate=16000,
return_tensors="pt",
padding="longest",
)
feature = inputs["input_values"].squeeze(0)
B, T = feature.shape
num_samples = supervisions["num_samples"]
mask = torch.arange(0, T).expand(B, T) < num_samples.reshape([-1, 1])
mask = mask.to(model.device)
feature = feature.to(model.device)
memory_embeddings = model.wav2vec2(feature, mask)[0]
logits = model.lm_head(memory_embeddings)
predicted_ids = torch.argmax(logits, dim=-1)
hyps = processor.batch_decode(predicted_ids)
texts = batch["supervisions"]["text"]
this_batch = []
assert len(hyps) == len(texts)
assert len(hyps) == len(texts)
for hyp_text, ref_text in zip(hyps, texts):
ref_words = ref_text.split()
hyp_words = hyp_text.split()
this_batch.append((ref_words, hyp_words))
results["ctc_greedy_search"].extend(this_batch)
num_cuts += len(texts)
if batch_idx % 20 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.exp_dir / f"wav2vec2-recogs-{test_set_name}-{key}.txt"
)
store_transcripts(filename=recog_path, texts=results)
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.exp_dir / f"wav2vec2-errs-{test_set_name}-{key}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info(
"Wrote detailed error stats to {}".format(errs_filename)
)
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.exp_dir / f"wav2vec2-wer-summary-{test_set_name}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
# args.lang_dir = Path(args.lang_dir)
# args.lm_dir = Path(args.lm_dir)
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
logging.info("Decoding started")
logging.info(params)
# lexicon = Lexicon(params.lang_dir)
# max_token_id = max(lexicon.tokens)
# num_classes = max_token_id + 1 # +1 for the blank
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-large-960h-lv60-self"
).to("cuda")
processor = Wav2Vec2Processor.from_pretrained(
"facebook/wav2vec2-large-960h-lv60-self"
)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
librispeech = LibriSpeechAsrDataModule(args)
# CAUTION: `test_sets` is for displaying only.
# If you want to skip test-clean, you have to skip
# it inside the for loop. That is, use
#
# if test_set == 'test-clean': continue
#
test_sets = ["test-clean", "test-other"]
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
results_dict = decode_dataset(
dl=test_dl,
model=model,
processor=processor,
)
save_results(
params=params, test_set_name=test_set, results_dict=results_dict
)
logging.info("Done!")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()