mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
292 lines
9.1 KiB
Python
Executable File
292 lines
9.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
|
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
|
|
# Copyright 2025 Nvidia (Yuekai Zhang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
python3 local/compute_whisper_fbank.py \
|
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
--out-dir data/fbank \
|
|
--huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \
|
|
--audio-key question_audio --text-key answer \
|
|
--prefix ultrachat
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from lhotse import CutSet, LilcomChunkyWriter, WhisperFbank, WhisperFbankConfig
|
|
from vocalnet_lhotse_cutset import LazyCustomDatasetIterator
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-mel-bins",
|
|
type=int,
|
|
default=80,
|
|
help="""The number of mel bins for Fbank""",
|
|
)
|
|
parser.add_argument(
|
|
"--whisper-fbank",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Use WhisperFbank instead of Fbank. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--resample-to-16kHz",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Resample audio to 16kHz. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--speed-perturb",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--out-dir",
|
|
type=str,
|
|
default="data/fbank",
|
|
help="Output directory for the computed features",
|
|
)
|
|
parser.add_argument(
|
|
"--huggingface-dataset-path-or-name",
|
|
type=str,
|
|
default="/workspace/Belle_1.4M-SLAM-Omni",
|
|
help="The path or name of the Huggingface dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--audio-key",
|
|
type=str,
|
|
default="question_audio",
|
|
help="The key in the Huggingface dataset containing the audio data",
|
|
)
|
|
parser.add_argument(
|
|
"--text-key",
|
|
type=str,
|
|
default="answer",
|
|
help="The key in the Huggingface dataset containing the text data",
|
|
)
|
|
parser.add_argument(
|
|
"--prefix",
|
|
type=str,
|
|
default="belle",
|
|
help="""The dataset prefix to use when saving the features""",
|
|
)
|
|
parser.add_argument(
|
|
"--json-file-path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to the json file containing the vocalnet data",
|
|
)
|
|
parser.add_argument(
|
|
"--drop-recordings",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Drop recordings. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--subset",
|
|
type=str,
|
|
default=None,
|
|
help="The subset to use from the Huggingface dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--split",
|
|
type=str,
|
|
default="train",
|
|
help="The split to use from the Huggingface dataset",
|
|
)
|
|
return parser
|
|
|
|
|
|
def remove_short_and_long_utt(c):
|
|
# Keep only utterances with duration between 1 second and 20 seconds
|
|
#
|
|
# Caution: There is a reason to select 20.0 here. Please see
|
|
# ../local/display_manifest_statistics.py
|
|
#
|
|
# You should use ../local/display_manifest_statistics.py to get
|
|
# an utterance duration distribution for your dataset to select
|
|
# the threshold
|
|
if c.duration < 1.0 or c.duration > 50.0:
|
|
# logging.warning(
|
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
# )
|
|
return False
|
|
return True
|
|
|
|
|
|
def compute_fbank(args):
|
|
in_out_dir = Path(args.out_dir)
|
|
in_out_dir.mkdir(parents=True, exist_ok=True)
|
|
# number of workers in dataloader
|
|
num_workers = 4
|
|
|
|
# number of seconds in a batch
|
|
batch_duration = 10
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
if args.whisper_fbank:
|
|
extractor = WhisperFbank(
|
|
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
|
)
|
|
else:
|
|
raise NotImplementedError("Only WhisperFbank is implemented.")
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
dataset = load_dataset(
|
|
args.huggingface_dataset_path_or_name,
|
|
args.subset,
|
|
streaming=True,
|
|
split=args.split,
|
|
)
|
|
num_shards = dataset.num_shards
|
|
num_digits = 5
|
|
for i in range(252, num_shards):
|
|
shard = dataset.shard(num_shards, i)
|
|
# shard = shard.take(10) # for testing
|
|
logging.info(
|
|
f"Loading dataset shard {i} from {args.huggingface_dataset_path_or_name}"
|
|
)
|
|
|
|
idx = f"{i}".zfill(num_digits)
|
|
|
|
cut_set = CutSet.from_huggingface_dataset(
|
|
shard, audio_key=args.audio_key, text_key=args.text_key
|
|
)
|
|
|
|
cut_set = cut_set.filter(remove_short_and_long_utt)
|
|
if args.resample_to_16kHz:
|
|
cut_set = cut_set.resample(16000)
|
|
if args.speed_perturb:
|
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
|
|
logging.info("Computing features")
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{in_out_dir}/feats_{idx}_{args.subset}",
|
|
num_workers=num_workers,
|
|
batch_duration=batch_duration,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
# cut_set = cut_set.trim_to_supervisions(
|
|
# keep_overlapping=False, min_duration=None
|
|
# )
|
|
cuts_path = f"{in_out_dir}/cuts_{args.prefix}.{idx}.{args.subset}.jsonl.gz"
|
|
logging.info(f"Saving to {cuts_path}")
|
|
# see https://github.com/lhotse-speech/lhotse/issues/1125
|
|
if args.drop_recordings:
|
|
cut_set.drop_recordings().to_file(cuts_path)
|
|
else:
|
|
cut_set.to_file(cuts_path)
|
|
|
|
|
|
def compute_fbank_vocalnet(args):
|
|
in_out_dir = Path(args.out_dir)
|
|
in_out_dir.mkdir(parents=True, exist_ok=True)
|
|
# number of workers in dataloader
|
|
num_workers = 4
|
|
|
|
# number of seconds in a batch
|
|
batch_duration = 10
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
if args.whisper_fbank:
|
|
extractor = WhisperFbank(
|
|
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
|
)
|
|
else:
|
|
raise NotImplementedError("Only WhisperFbank is implemented.")
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
num_shards = 50
|
|
num_digits = 5
|
|
for i in range(num_shards):
|
|
logging.info(f"Processing shard {i}")
|
|
idx = f"{i}".zfill(num_digits)
|
|
cut_set = CutSet(
|
|
LazyCustomDatasetIterator(
|
|
json_file_path=args.json_file_path, shard_id=i, num_shards=num_shards
|
|
)
|
|
)
|
|
cut_set = cut_set.trim_to_supervisions(
|
|
keep_overlapping=False, min_duration=None
|
|
)
|
|
|
|
if args.resample_to_16kHz:
|
|
cut_set = cut_set.resample(16000)
|
|
if args.speed_perturb:
|
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
|
|
logging.info("Computing features")
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{in_out_dir}/feats_{idx}",
|
|
num_workers=num_workers,
|
|
batch_duration=batch_duration,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
cuts_path = f"{in_out_dir}/cuts_{args.prefix}.{idx}.jsonl.gz"
|
|
logging.info(f"Saving to {cuts_path}")
|
|
# see https://github.com/lhotse-speech/lhotse/issues/1125
|
|
cut_set.to_file(cuts_path)
|
|
|
|
|
|
def main():
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
logging.info(vars(args))
|
|
if args.json_file_path is not None:
|
|
compute_fbank_vocalnet(args)
|
|
else:
|
|
compute_fbank(args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|