2025-02-20 15:35:01 +08:00

167 lines
6.3 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
stage=1
stop_stage=4
dl_dir=$PWD/download
dataset_parts="Premium" # Basic for all 7226 hours data, Premium for 945 hours subset.
text_extractor="pypinyin_initials_finals" # default is espeak for English
audio_extractor="Encodec" # or Fbank
audio_feats_dir=data/tokenized
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "dl_dir: $dl_dir"
log "Stage 0: Download data"
huggingface-cli login
huggingface-cli download --repo-type dataset --local-dir $dl_dir Wenetspeech4TTS/WenetSpeech4TTS
# Extract the downloaded data:
for folder in Standard Premium Basic; do
for file in "$dl_dir/$folder"/*.tar.gz; do
tar -xzvf "$file" -C "$dl_dir/$folder"
done
done
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare wenetspeech4tts manifest"
# We assume that you have downloaded the wenetspeech4tts corpus
# to $dl_dir/wenetspeech4tts
mkdir -p data/manifests
if [ ! -e data/manifests/.wenetspeech4tts.done ]; then
lhotse prepare wenetspeech4tts $dl_dir data/manifests --dataset-parts "${dataset_parts}"
touch data/manifests/.wenetspeech4tts.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Tokenize/Fbank wenetspeech4tts"
mkdir -p ${audio_feats_dir}
if [ ! -e ${audio_feats_dir}/.wenetspeech4tts.tokenize.done ]; then
python3 ./local/compute_neural_codec_and_prepare_text_tokens.py --dataset-parts "${dataset_parts}" \
--text-extractor ${text_extractor} \
--audio-extractor ${audio_extractor} \
--batch-duration 2500 --prefix "wenetspeech4tts" \
--src-dir "data/manifests" \
--split 100 \
--output-dir "${audio_feats_dir}/wenetspeech4tts_${dataset_parts}_split_100"
cp ${audio_feats_dir}/wenetspeech4tts_${dataset_parts}_split_100/unique_text_tokens.k2symbols ${audio_feats_dir}
fi
touch ${audio_feats_dir}/.wenetspeech4tts.tokenize.done
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Combine features"
if [ ! -f ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz ]; then
pieces=$(find ${audio_feats_dir}/wenetspeech4tts_${dataset_parts}_split_100 -name "*.jsonl.gz")
lhotse combine $pieces ${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Prepare wenetspeech4tts train/dev/test"
if [ ! -e ${audio_feats_dir}/.wenetspeech4tts.train.done ]; then
lhotse subset --first 400 \
${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz \
${audio_feats_dir}/cuts_dev.jsonl.gz
lhotse subset --last 400 \
${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz \
${audio_feats_dir}/cuts_test.jsonl.gz
lhotse copy \
${audio_feats_dir}/wenetspeech4tts_cuts_${dataset_parts}.jsonl.gz \
${audio_feats_dir}/cuts_train.jsonl.gz
touch ${audio_feats_dir}/.wenetspeech4tts.train.done
fi
python3 ./local/display_manifest_statistics.py --manifest-dir ${audio_feats_dir}
fi
subset="Basic"
prefix="wenetspeech4tts"
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Generate fbank (used by ./f5-tts)"
mkdir -p data/fbank
if [ ! -e data/fbank/.${prefix}.done ]; then
./local/compute_mel_feat.py --dataset-parts $subset --split 100
touch data/fbank/.${prefix}.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Split the ${prefix} cuts into train, valid and test sets (used by ./f5-tts)"
if [ ! -f data/fbank/${prefix}_cuts_${subset}.jsonl.gz ]; then
echo "Combining ${prefix} cuts"
pieces=$(find data/fbank/ -name "${prefix}_cuts_${subset}.*.jsonl.gz")
lhotse combine $pieces data/fbank/${prefix}_cuts_${subset}.jsonl.gz
fi
if [ ! -e data/fbank/.${prefix}_split.done ]; then
echo "Splitting ${prefix} cuts into train, valid and test sets"
lhotse subset --last 800 \
data/fbank/${prefix}_cuts_${subset}.jsonl.gz \
data/fbank/${prefix}_cuts_validtest.jsonl.gz
lhotse subset --first 400 \
data/fbank/${prefix}_cuts_validtest.jsonl.gz \
data/fbank/${prefix}_cuts_valid.jsonl.gz
lhotse subset --last 400 \
data/fbank/${prefix}_cuts_validtest.jsonl.gz \
data/fbank/${prefix}_cuts_test.jsonl.gz
rm data/fbank/${prefix}_cuts_validtest.jsonl.gz
n=$(( $(gunzip -c data/fbank/${prefix}_cuts_${subset}.jsonl.gz | wc -l) - 800 ))
lhotse subset --first $n \
data/fbank/${prefix}_cuts_${subset}.jsonl.gz \
data/fbank/${prefix}_cuts_train.jsonl.gz
touch data/fbank/.${prefix}_split.done
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Extract cosyvoice2 FSQ token (used by ./f5-tts semantic token experiment)"
pip install s3tokenizer
split_name=("valid" "test" "train")
for split in "${split_name[@]}"; do
echo "Processing $split"
wav_scp_file=wav_${split}.scp
output_dir="./cosy_v2_tokens_${split}"
oringinal_jsonl_file=data/fbank/${prefix}_cuts_${split}.jsonl.gz
mkdir -p $output_dir
zcat $oringinal_jsonl_file | jq -r '.recording.id + " " + .recording.sources[0].source' > $wav_scp_file
torchrun --nproc_per_node=8 --nnodes=1 \
--rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
`which s3tokenizer` --wav_scp $wav_scp_file \
--device "cuda" \
--output_dir $output_dir \
--batch_size 32 \
--num_workers 4 \
--model "speech_tokenizer_v2_25hz" # or "speech_tokenizer_v1_25hz
cat $output_dir/* > $output_dir/${prefix}_${split}_cosy_v2_tokens.json
python3 local/attach_speech_tokens.py --jsonl-prefix ${prefix}_cuts_${split} --tokens-path $output_dir/${prefix}_${split}_cosy_v2_tokens.json --manifest-dir data/fbank
done
fi