mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
159 lines
4.4 KiB
Bash
Executable File
159 lines
4.4 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
#. ../../../tools/activate_python.sh
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
stage=-1
|
|
stop_stage=100
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/LJSpeech
|
|
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
|
|
# You can download them from https://www.openslr.org/12
|
|
#
|
|
# - $dl_dir/lm
|
|
# This directory contains the following files downloaded from
|
|
# http://www.openslr.org/resources/11
|
|
#
|
|
# - 3-gram.pruned.1e-7.arpa.gz
|
|
# - 3-gram.pruned.1e-7.arpa
|
|
# - 4-gram.arpa.gz
|
|
# - 4-gram.arpa
|
|
# - LJSpeech-vocab.txt
|
|
# - LJSpeech-lexicon.txt
|
|
# - LJSpeech-lm-norm.txt.gz
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
dl_dir=/DB/LibriSpeech_tar
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bpe_xxx,
|
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
5000
|
|
2000
|
|
1000
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/LJSpeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/LJSpeech $dl_dir/LJSpeech
|
|
#
|
|
if [ ! -d $dl_dir/LJSpeech/wav ]; then
|
|
echo "download not supported yet";
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare LJSpeech manifest"
|
|
# We assume that you have downloaded the LJSpeech corpus (ver 1.1)
|
|
# You need to prepare LJSpeech according to data_settings/*_list.txt like below
|
|
# $dl_dir/LJSpeech
|
|
# |-- wavs
|
|
# | |-- train
|
|
# | |-- dev
|
|
# | |-- test
|
|
# |-- texts
|
|
# |-- metadata.csv
|
|
|
|
# to $dl_dir/LJSpeech
|
|
if [ ! -e $dl_dir/LJSpeech/.LJSpeech.done ]; then
|
|
for dset in "train" "dev" "test"; do
|
|
log "Resampling LJSpeech $dset set"
|
|
file_list=`ls $dl_dir/LJSpeech/wavs/$dset/`
|
|
for wavfile in $file_list; do
|
|
sox -v 0.9 $dl_dir/LJSpeech/wavs/$dset/$wavfile -r 16000 -e signed-integer $dl_dir/LJSpeech/wavs/$dset/tmp_$wavfile
|
|
mv $dl_dir/LJSpeech/wavs/$dset/tmp_$wavfile $dl_dir/LJSpeech/wavs/$dset/$wavfile
|
|
done
|
|
log "Resampling $dset done"
|
|
done
|
|
python local/prepare_LJSpeech_text.py $dl_dir/LJSpeech/metadata.csv
|
|
touch $dl_dir/LJSpeech/.LJSpeech.done
|
|
fi
|
|
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.LJSpeech.done ]; then
|
|
python local/prepare_LJSpeech.py $dl_dir/LJSpeech
|
|
touch data/manifests/.LJSpeech.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.musan.done ]; then
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 3: Compute fbank for LJSpeech"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.LJSpeech.done ]; then
|
|
./local/compute_fbank_LJSpeech.py --data-dir $dl_dir/LJSpeech
|
|
touch data/fbank/.LJSpeech.done
|
|
fi
|
|
|
|
if [ ! -e data/fbank/.LJSpeech-validated.done ]; then
|
|
log "Validating data/fbank for LJSpeech"
|
|
parts=`ls $dl_dir/LJSpeech/wavs/`
|
|
for part in ${parts[@]}; do
|
|
python3 ./local/validate_manifest.py \
|
|
data/fbank/LJSpeech_cuts_${part}.jsonl.gz
|
|
done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.musan.done ]; then
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.musan.done
|
|
fi
|
|
fi
|