icefall/egs/librispeech/ASR/prepare_gigaspeech.py
2021-11-05 22:12:32 +08:00

313 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2021 Johns Hopkins University (Piotr Żelasko)
# Apache 2.0
import argparse
import os
import re
import subprocess
import sys
from contextlib import contextmanager
from pathlib import Path
import torch
from gigaspeech_datamodule import get_context_suffix
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomHdf5Writer,
SupervisionSegment,
combine,
)
from lhotse.recipes import prepare_gigaspeech, prepare_musan
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or it wastes a lot of CPU and
# slow things down. Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
@contextmanager
def get_executor():
# We'll either return a process pool or a distributed worker pool.
# Note that this has to be a context manager because we might use multiple
# context manager ("with" clauses) inside, and this way everything will
# free up the resources at the right time.
try:
# If this is executed on the CLSP grid, we will try to use the
# Grid Engine to distribute the tasks.
# Other clusters can also benefit from that, provided a cluster-specific wrapper.
# (see https://github.com/pzelasko/plz for reference)
#
# The following must be installed:
# $ pip install dask distributed
# $ pip install git+https://github.com/pzelasko/plz
name = subprocess.check_output("hostname -f", shell=True, text=True)
if name.strip().endswith(".clsp.jhu.edu"):
import plz
from distributed import Client
with plz.setup_cluster() as cluster:
cluster.scale(80)
yield Client(cluster)
return
except:
pass
# No need to return anything - compute_and_store_features
# will just instantiate the pool itself.
yield None
def locate_corpus(*corpus_dirs):
for d in corpus_dirs:
if os.path.exists(d):
return d
print(
"Please create a place on your system to put the downloaded Librispeech data "
"and add it to `corpus_dirs`"
)
sys.exit(1)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--num-jobs",
type=int,
default=min(15, os.cpu_count()),
help="Number of parallel jobs.",
)
parser.add_argument(
"--subset",
type=str,
default="XS",
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
)
parser.add_argument(
"--context-window",
type=float,
default=0.0,
help="Training cut duration in seconds. "
"Use 0 to train on supervision segments without acoustic context, with variable cut lengths; "
"number larger than zero will create multi-supervisions cuts with actual acoustic context. ",
)
parser.add_argument(
"--context-direction",
type=str,
default="center",
help="If context-window is 0, does nothing. "
"If it's larger than 0, determines in which direction (relative to the supervision) "
"to seek for extra acoustic context. Available values: (left|right|center|random).",
)
parser.add_argument(
"--precomputed-features",
type=str2bool,
default=True,
help="Should we pre-compute features and store them on disk or not. "
"It is recommended to disable it for L and XL splits as the pre-computation "
"might currently consume excessive memory and time -- use on-the-fly feature "
"extraction in the training script instead.",
)
parser.add_argument(
"--num-workers",
type=int,
default=4,
help="Number of workers for compute_and_store_features_batch.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch"
"for compute_and_store_features_batch.",
)
return parser
# Similar text filtering and normalization procedure as in:
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
def normalize_text(
utt: str,
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
whitespace_pattern=re.compile(r"\s\s+"),
) -> str:
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
def has_no_oov(
sup: SupervisionSegment, oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>")
) -> bool:
return oov_pattern.search(sup.text) is None
def main():
args = get_parser().parse_args()
dataset_parts = [args.subset, "DEV", "TEST"]
print("Parts we will prepare: ", dataset_parts)
corpus_dir = locate_corpus(
Path("/export/corpora5/gigaspeech"),
Path("/exp/pzelasko/gigaspeech"),
Path("/home/storage07/zhangjunbo/data/GigaSpeech")
)
musan_dir = locate_corpus(
Path("/export/corpora5/JHU/musan"),
Path("/export/common/data/corpora/MUSAN/musan"),
Path("/root/fangjun/data/musan"),
)
output_dir = Path("exp/giga_data")
print("GigaSpeech manifest preparation:")
gigaspeech_manifests = prepare_gigaspeech(
corpus_dir=corpus_dir,
dataset_parts=dataset_parts,
output_dir=output_dir,
num_jobs=args.num_jobs,
)
print("Musan manifest preparation:")
musan_cuts_path = output_dir / "cuts_musan.json.gz"
musan_manifests = prepare_musan(
corpus_dir=musan_dir, output_dir=output_dir, parts=("music", "speech", "noise")
)
ctx_suffix = get_context_suffix(args, subparser=False)
print("Feature extraction:")
# extractor = Fbank(FbankConfig(num_mel_bins=80))
extractor = KaldifeatFbank(KaldifeatFbankConfig(device='cuda')) # default config uses 80 mel bins already
with get_executor() as ex: # Initialize the executor only once.
for partition, manifests in gigaspeech_manifests.items():
raw_cuts_path = output_dir / f"gigaspeech_cuts_{partition}_raw.jsonl.gz"
cuts_path = (
output_dir / f"gigaspeech_cuts_{partition}{ctx_suffix}.jsonl.gz"
)
if raw_cuts_path.is_file():
print(f"{partition} already exists - skipping feature extraction.")
else:
# Note this step makes the recipe different than LibriSpeech:
# We must filter out some utterances and remove punctuation to be consistent with Kaldi.
print("Filtering OOV utterances from supervisions")
manifests["supervisions"] = manifests["supervisions"].filter(has_no_oov)
print("Normalizing text in", partition)
for sup in manifests["supervisions"]:
sup.text = normalize_text(sup.text)
# Create long-recording cut manifests.
print("Processing", partition)
cut_set = CutSet.from_manifests(
recordings=manifests["recordings"],
supervisions=manifests["supervisions"],
)
# Run data augmentation that needs to be done in the time domain.
if partition not in ["DEV", "TEST"]:
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set.to_file(raw_cuts_path)
if cuts_path.is_file():
print(
f"{partition} already exists - skipping cutting into sub-segments."
)
else:
try:
# If we skipped initializing `cut_set` because it exists on disk, we'll load it.
# This helps us avoid re-computing the features for different variants of
# context windows.
cut_set
except NameError:
print(f"Reading {partition} raw cuts from disk.")
cut_set = CutSet.from_file(raw_cuts_path)
# Note this step makes the recipe different than LibriSpeech:
# Since recordings are long, the initial CutSet has very long cuts with a plenty of supervisions.
# We cut these into smaller chunks centered around each supervision, possibly adding acoustic
# context.
print(f"About to split {partition} raw cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False,
min_duration=None
if args.context_window <= 0.0
else args.context_window,
context_direction=args.context_direction,
)
if partition in ["L", "XL"]:
# Before storing manifests in, we want to pre-shuffle them,
# as the sampler won't be able to do it later in an efficient manner.
cut_set = cut_set.shuffle()
if args.precomputed_features:
# Extract the features after cutting large recordings into smaller cuts.
# Note: we support very efficient "chunked" feature reads with the argument
# `storage_type=ChunkedLilcomHdf5Writer`, but we don't support efficient
# data augmentation and feature computation for long recordings yet.
# Therefore, we sacrifice some storage for the ability to precompute
# features on shorter chunks, without memory blow-ups.
# cut_set = cut_set.compute_and_store_features(
# extractor=extractor,
# storage_path=f"{output_dir}/feats_gigaspeech_{partition}",
# # when an executor is specified, make more partitions
# num_jobs=args.num_jobs if ex is None else 80,
# executor=ex,
# )
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_gigaspeech_{partition}",
batch_duration=args.batch_duration,
num_workers=args.num_workers,
storage_type=partial(LilcomHdf5Writer, tick_power=-3),
)
cut_set.to_file(cuts_path)
# Remove cut_set so the next iteration can correctly infer whether it needs to
# load the raw cuts from disk or not.
del cut_set
# Now onto Musan
if not musan_cuts_path.is_file():
print("Extracting features for Musan")
# create chunks of Musan with duration 5 - 10 seconds
musan_cuts = (
CutSet.from_manifests(
recordings=combine(
part["recordings"] for part in musan_manifests.values()
)
)
.cut_into_windows(10.0)
.filter(lambda c: c.duration > 5)
.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_musan",
batch_duration=args.batch_duration,
num_workers=args.num_workers,
)
# .compute_and_store_features(
# extractor=extractor,
# storage_path=f"{output_dir}/feats_musan",
# num_jobs=args.num_jobs if ex is None else 80,
# executor=ex,
# storage_type=LilcomHdf5Writer,
# )
)
musan_cuts.to_file(musan_cuts_path)
if __name__ == "__main__":
main()