icefall/egs/librispeech/ASR/local/compute_fbank_librispeech.py
2021-07-20 10:02:20 +08:00

69 lines
2.1 KiB
Python
Executable File

#!/usr/bin/env python3
"""
This file computes fbank features of the librispeech dataset.
Its looks for manifests in the directory data/manifests
and generated fbank features are saved in data/fbank.
"""
import os
from pathlib import Path
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
def compute_fbank_librispeech():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
num_mel_bins = 80
dataset_parts = (
"dev-clean",
"dev-other",
"test-clean",
"test-other",
"train-clean-100",
"train-clean-360",
"train-other-500",
)
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir
)
assert manifests is not None
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"cuts_{partition}.json.gz").is_file():
print(f"{partition} already exists - skipping.")
continue
print("Processing", partition)
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomHdf5Writer,
)
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
if __name__ == "__main__":
compute_fbank_librispeech()