mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
* support long file transcription * rename recipe as long_file_recog * add docs * support multi-gpu decoding * style fix
436 lines
13 KiB
Python
Executable File
436 lines
13 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads torchscript models, exported by `torch.jit.script()`,
|
|
and uses them to decode waves.
|
|
You can use the following command to get the exported models:
|
|
|
|
./pruned_transducer_stateless7/export.py \
|
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
--bpe-model data/lang_bpe_500/bpe.model \
|
|
--epoch 20 \
|
|
--avg 10 \
|
|
--jit 1
|
|
|
|
You can also download the jit model from
|
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
|
|
"""
|
|
|
|
import argparse
|
|
import torch.multiprocessing as mp
|
|
import torch
|
|
import torch.nn as nn
|
|
import logging
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import List, Optional, Tuple
|
|
|
|
from pathlib import Path
|
|
|
|
import k2
|
|
import sentencepiece as spm
|
|
from asr_datamodule import AsrDataModule
|
|
from beam_search import (
|
|
fast_beam_search_one_best,
|
|
greedy_search_batch,
|
|
modified_beam_search,
|
|
)
|
|
from icefall.utils import AttributeDict, convert_timestamp, setup_logger
|
|
from lhotse import CutSet, load_manifest_lazy
|
|
from lhotse.cut import Cut
|
|
from lhotse.supervision import AlignmentItem
|
|
from lhotse.serialization import SequentialJsonlWriter
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
parser.add_argument(
|
|
"--subset",
|
|
type=str,
|
|
default="small",
|
|
help="Subset to process. Possible values are 'small', 'medium', 'large'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--manifest-in-dir",
|
|
type=Path,
|
|
default=Path("data/librilight/manifests_chunk"),
|
|
help="Path to directory with chunks cuts.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--manifest-out-dir",
|
|
type=Path,
|
|
default=Path("data/librilight/manifests_chunk_recog"),
|
|
help="Path to directory to save the chunk cuts with recognition results.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--log-dir",
|
|
type=Path,
|
|
default=Path("long_file_recog/log"),
|
|
help="Path to directory to save logs.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nn-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the torchscript model cpu_jit.pt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- modified_beam_search
|
|
- fast_beam_search
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing decoding parameters."""
|
|
params = AttributeDict(
|
|
{
|
|
"subsampling_factor": 4,
|
|
"frame_shift_ms": 10,
|
|
# Used only when --method is beam_search or modified_beam_search.
|
|
"beam_size": 4,
|
|
# Used only when --method is beam_search or fast_beam_search.
|
|
# A floating point value to calculate the cutoff score during beam
|
|
# search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
# `beam` in Kaldi.
|
|
"beam": 4,
|
|
"max_contexts": 4,
|
|
"max_states": 8,
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
batch: dict,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
) -> Tuple[List[List[str]], List[List[float]], List[List[float]]]:
|
|
"""Decode one batch.
|
|
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
paramsmodel:
|
|
The neural model.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
|
only when --decoding_method is fast_beam_search.
|
|
|
|
Returns:
|
|
Return the decoding result, timestamps, and scores.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
|
|
feature = feature.to(device)
|
|
# at entry, feature is (N, T, C)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
|
|
|
if params.decoding_method == "fast_beam_search":
|
|
res = fast_beam_search_one_best(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
return_timestamps=True,
|
|
)
|
|
elif params.decoding_method == "greedy_search":
|
|
res = greedy_search_batch(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
return_timestamps=True,
|
|
)
|
|
elif params.decoding_method == "modified_beam_search":
|
|
res = modified_beam_search(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam_size,
|
|
return_timestamps=True,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
|
|
hyps = []
|
|
timestamps = []
|
|
scores = []
|
|
for i in range(feature.shape[0]):
|
|
hyps.append(res.hyps[i])
|
|
timestamps.append(
|
|
convert_timestamp(
|
|
res.timestamps[i], params.subsampling_factor, params.frame_shift_ms
|
|
)
|
|
)
|
|
scores.append(res.scores[i])
|
|
|
|
return hyps, timestamps, scores
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
sp: spm.SentencePieceProcessor,
|
|
cuts_writer: SequentialJsonlWriter,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
) -> None:
|
|
"""Decode dataset and store the recognition results to manifest.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
sp:
|
|
The BPE model.
|
|
cuts_writer:
|
|
Writer to save the cuts with recognition results.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
|
only when --decoding_method is fast_beam_search.
|
|
|
|
Returns:
|
|
Return a dict, whose key may be "greedy_search" if greedy search
|
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
Its value is a list of tuples. Each tuple contains five elements:
|
|
- cut_id
|
|
- reference transcript
|
|
- predicted result
|
|
- timestamps of reference transcript
|
|
- timestamps of predicted result
|
|
"""
|
|
# Background worker to add alignemnt and save cuts to disk.
|
|
def _save_worker(
|
|
cuts: List[Cut],
|
|
hyps: List[List[str]],
|
|
timestamps: List[List[float]],
|
|
scores: List[List[float]],
|
|
):
|
|
for cut, symbol_list, time_list, score_list in zip(
|
|
cuts, hyps, timestamps, scores
|
|
):
|
|
symbol_list = sp.id_to_piece(symbol_list)
|
|
ali = [
|
|
AlignmentItem(symbol=symbol, start=start, duration=None, score=score)
|
|
for symbol, start, score in zip(symbol_list, time_list, score_list)
|
|
]
|
|
assert len(cut.supervisions) == 1, len(cut.supervisions)
|
|
cut.supervisions[0].alignment = {"symbol": ali}
|
|
cuts_writer.write(cut, flush=True)
|
|
|
|
num_cuts = 0
|
|
log_interval = 10
|
|
futures = []
|
|
with ThreadPoolExecutor(max_workers=1) as executor:
|
|
# We only want one background worker so that serialization is deterministic.
|
|
|
|
for batch_idx, batch in enumerate(dl):
|
|
cuts = batch["supervisions"]["cut"]
|
|
|
|
hyps, timestamps, scores = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
batch=batch,
|
|
)
|
|
|
|
futures.append(
|
|
executor.submit(_save_worker, cuts, hyps, timestamps, scores)
|
|
)
|
|
|
|
num_cuts += len(cuts)
|
|
if batch_idx % log_interval == 0:
|
|
logging.info(f"cuts processed until now is {num_cuts}")
|
|
|
|
for f in futures:
|
|
f.result()
|
|
|
|
|
|
@torch.no_grad()
|
|
def run(rank, world_size, args, in_cuts):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
setup_logger(f"{params.log_dir}/log-decode")
|
|
logging.info("Decoding started")
|
|
|
|
assert params.decoding_method in (
|
|
"greedy_search",
|
|
"fast_beam_search",
|
|
"modified_beam_search",
|
|
), params.decoding_method
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(f"{params}")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"device: {device}")
|
|
|
|
logging.info("Loading jit model")
|
|
model = torch.jit.load(params.nn_model_filename)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
if params.decoding_method == "fast_beam_search":
|
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
else:
|
|
decoding_graph = None
|
|
|
|
# we will store new cuts with recognition results.
|
|
args.return_cuts = True
|
|
asr_data_module = AsrDataModule(args)
|
|
|
|
if world_size > 1:
|
|
in_cuts = in_cuts[rank]
|
|
out_cuts_filename = params.manifest_out_dir / (
|
|
f"{params.cuts_filename}_job_{rank}" + params.suffix
|
|
)
|
|
else:
|
|
out_cuts_filename = params.manifest_out_dir / (
|
|
f"{params.cuts_filename}" + params.suffix
|
|
)
|
|
|
|
dl = asr_data_module.dataloaders(in_cuts)
|
|
|
|
cuts_writer = CutSet.open_writer(out_cuts_filename, overwrite=True)
|
|
decode_dataset(
|
|
dl=dl,
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
decoding_graph=decoding_graph,
|
|
cuts_writer=cuts_writer,
|
|
)
|
|
cuts_writer.close()
|
|
logging.info(f"Cuts saved to {out_cuts_filename}")
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
AsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
|
|
subset = args.subset
|
|
assert subset in ["small", "medium", "large"], subset
|
|
|
|
manifest_out_dir = args.manifest_out_dir
|
|
manifest_out_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
args.suffix = ".jsonl.gz"
|
|
args.cuts_filename = f"librilight_cuts_{args.subset}"
|
|
|
|
out_cuts_filename = manifest_out_dir / (args.cuts_filename + args.suffix)
|
|
if out_cuts_filename.is_file():
|
|
logging.info(f"{out_cuts_filename} already exists - skipping.")
|
|
return
|
|
|
|
in_cuts_filename = args.manifest_in_dir / (args.cuts_filename + args.suffix)
|
|
in_cuts = load_manifest_lazy(in_cuts_filename)
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
chunk_size = (len(in_cuts) + (world_size - 1)) // world_size
|
|
# Each manifest is saved at: ``{output_dir}/{prefix}.{split_idx}.jsonl.gz``
|
|
splits = in_cuts.split_lazy(
|
|
output_dir=args.manifest_in_dir / "split",
|
|
chunk_size=chunk_size,
|
|
prefix=args.cuts_filename,
|
|
)
|
|
assert len(splits) == world_size, (len(splits), world_size)
|
|
mp.spawn(run, args=(world_size, args, splits), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=world_size, args=args, in_cuts=in_cuts)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|