mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 18:42:19 +00:00
1109 lines
34 KiB
Python
1109 lines
34 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang,
|
|
# Han Zhu)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This script trains a ZipVoice model with the flow-matching loss.
|
|
|
|
Usage:
|
|
|
|
python3 zipvoice/train_flow.py \
|
|
--world-size 8 \
|
|
--use-fp16 1 \
|
|
--dataset emilia \
|
|
--max-duration 500 \
|
|
--lr-hours 30000 \
|
|
--lr-batches 7500 \
|
|
--token-file "data/tokens_emilia.txt" \
|
|
--manifest-dir "data/fbank_emilia" \
|
|
--num-epochs 11 \
|
|
--exp-dir zipvoice/exp_zipvoice
|
|
"""
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import optim
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from checkpoint import load_checkpoint, save_checkpoint
|
|
from lhotse.cut import Cut, CutSet
|
|
from lhotse.utils import fix_random_seed
|
|
from model import get_model
|
|
from optim import Eden, ScaledAdam
|
|
from tokenizer import TokenizerEmilia, TokenizerLibriTTS
|
|
from torch import Tensor
|
|
from torch.amp import GradScaler, autocast
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim import Optimizer
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from tts_datamodule import TtsDataModule
|
|
from utils import get_adjusted_batch_count, prepare_input, set_batch_count
|
|
|
|
from icefall import diagnostics
|
|
from icefall.checkpoint import (
|
|
remove_checkpoints,
|
|
save_checkpoint_with_global_batch_idx,
|
|
update_averaged_model,
|
|
)
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
get_parameter_groups_with_lrs,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
|
|
|
|
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
|
parser.add_argument(
|
|
"--fm-decoder-downsampling-factor",
|
|
type=str,
|
|
default="1,2,4,2,1",
|
|
help="Downsampling factor for each stack of encoder layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--fm-decoder-num-layers",
|
|
type=str,
|
|
default="2,2,4,4,4",
|
|
help="Number of zipformer encoder layers per stack, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--fm-decoder-cnn-module-kernel",
|
|
type=str,
|
|
default="31,15,7,15,31",
|
|
help="Sizes of convolutional kernels in convolution modules in each encoder stack: "
|
|
"a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--fm-decoder-feedforward-dim",
|
|
type=int,
|
|
default=1536,
|
|
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--fm-decoder-num-heads",
|
|
type=int,
|
|
default=4,
|
|
help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--fm-decoder-dim",
|
|
type=int,
|
|
default=512,
|
|
help="Embedding dimension in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-encoder-downsampling-factor",
|
|
type=str,
|
|
default="1",
|
|
help="Downsampling factor for each stack of encoder layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-encoder-num-layers",
|
|
type=str,
|
|
default="4",
|
|
help="Number of zipformer encoder layers per stack, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-encoder-feedforward-dim",
|
|
type=int,
|
|
default=512,
|
|
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-encoder-cnn-module-kernel",
|
|
type=str,
|
|
default="9",
|
|
help="Sizes of convolutional kernels in convolution modules in each encoder stack: "
|
|
"a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-encoder-num-heads",
|
|
type=int,
|
|
default=4,
|
|
help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-encoder-dim",
|
|
type=int,
|
|
default=192,
|
|
help="Embedding dimension in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--query-head-dim",
|
|
type=int,
|
|
default=32,
|
|
help="Query/key dimension per head in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--value-head-dim",
|
|
type=int,
|
|
default=12,
|
|
help="Value dimension per head in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pos-head-dim",
|
|
type=int,
|
|
default=4,
|
|
help="Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pos-dim",
|
|
type=int,
|
|
default=48,
|
|
help="Positional-encoding embedding dimension",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--time-embed-dim",
|
|
type=int,
|
|
default=192,
|
|
help="Embedding dimension of timestamps embedding.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--text-embed-dim",
|
|
type=int,
|
|
default=192,
|
|
help="Embedding dimension of text embedding.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--token-type",
|
|
type=str,
|
|
default="phone",
|
|
choices=["phone", "char", "bpe"],
|
|
help="Input token type of TTS model, by default, "
|
|
"we use phone for emilia, char for libritts.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--token-file",
|
|
type=str,
|
|
default="data/tokens_emilia.txt",
|
|
help="The file that contains information that maps tokens to ids,"
|
|
"which is a text file with '{token}\t{token_id}' per line if type is"
|
|
"char or phone, otherwise it is a bpe_model file.",
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=11,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help="""Checkpoints of pre-trained models, will load it if not None
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipvoice/exp_zipvoice",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--base-lr", type=float, default=0.02, help="The base learning rate."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-batches",
|
|
type=float,
|
|
default=7500,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-epochs",
|
|
type=float,
|
|
default=10,
|
|
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-hours",
|
|
type=float,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it specifies the number of hours
|
|
that affects how rapidly the learning rate decreases.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ref-duration",
|
|
type=float,
|
|
default=50,
|
|
help="Reference batch duration for purposes of adjusting batch counts for setting various "
|
|
"schedules inside the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--print-diagnostics",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Accumulate stats on activations, print them and exit.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--inf-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Add hooks to check for infinite module outputs and gradients.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--save-every-n",
|
|
type=int,
|
|
default=4000,
|
|
help="""Save checkpoint after processing this number of batches"
|
|
periodically. We save checkpoint to exp-dir/ whenever
|
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
|
end of each epoch where `xxx` is the epoch number counting from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=30,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=200,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fp16",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to use half precision training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--feat-scale",
|
|
type=float,
|
|
default=0.1,
|
|
help="The scale factor of fbank feature",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--condition-drop-ratio",
|
|
type=float,
|
|
default=0.2,
|
|
help="The drop rate of text condition during training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
default="emilia",
|
|
choices=["emilia", "libritts"],
|
|
help="The used training dataset",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- sampling_rate: Sampling rate of the wavform.
|
|
|
|
- frame_shift_ms: Frame shift in milliseconds.
|
|
|
|
- feat_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- env_info: A dict containing information about the environment.
|
|
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 50,
|
|
"reset_interval": 200,
|
|
"valid_interval": 4000,
|
|
"sampling_rate": 24000,
|
|
"frame_shift_ms": 256 / 24000 * 1000,
|
|
"feat_dim": 100,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def resume_checkpoint(
|
|
params: AttributeDict, model: nn.Module, model_avg: nn.Module
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
logging.info(f"Resuming from file {filename}")
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
saved_params = load_checkpoint(
|
|
filename, model=model, model_avg=model_avg, strict=True
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
return saved_params
|
|
|
|
|
|
def compute_fbank_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
features: Tensor,
|
|
features_lens: Tensor,
|
|
tokens: List[List[int]],
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute loss given the model and its inputs.
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
features:
|
|
The target acoustic feature.
|
|
features_lens:
|
|
The number of frames of each utterance.
|
|
tokens:
|
|
Input tokens that representing the transcripts.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
"""
|
|
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
|
|
batch_size, num_frames, _ = features.shape
|
|
|
|
features = torch.nn.functional.pad(
|
|
features, (0, 0, 0, num_frames - features.size(1))
|
|
) # (B, T, F)
|
|
noise = torch.randn_like(features) # (B, T, F)
|
|
|
|
# Sampling t from uniform distribution
|
|
if is_training:
|
|
t = torch.rand(batch_size, 1, 1, device=device)
|
|
else:
|
|
t = (
|
|
(torch.arange(batch_size, device=device) / batch_size)
|
|
.unsqueeze(1)
|
|
.unsqueeze(2)
|
|
)
|
|
with torch.set_grad_enabled(is_training):
|
|
|
|
loss = model(
|
|
tokens=tokens,
|
|
features=features,
|
|
features_lens=features_lens,
|
|
noise=noise,
|
|
t=t,
|
|
condition_drop_ratio=params.condition_drop_ratio,
|
|
)
|
|
|
|
assert loss.requires_grad == is_training
|
|
info = MetricsTracker()
|
|
num_frames = features_lens.sum().item()
|
|
info["frames"] = num_frames
|
|
info["loss"] = loss.detach().cpu().item() * num_frames
|
|
|
|
return loss, info
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
tokenizer: TokenizerEmilia,
|
|
optimizer: Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
tokenizer:
|
|
Used to convert text to tokens.
|
|
optimizer:
|
|
The optimizer.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every epoch.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
|
|
# used to track the stats over iterations in one epoch
|
|
tot_loss = MetricsTracker()
|
|
|
|
saved_bad_model = False
|
|
|
|
def save_bad_model(suffix: str = ""):
|
|
save_checkpoint(
|
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=0,
|
|
)
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
|
|
if batch_idx % 10 == 0:
|
|
set_batch_count(model, get_adjusted_batch_count(params))
|
|
|
|
if (
|
|
params.valid_interval is None
|
|
and batch_idx == 0
|
|
and not params.print_diagnostics
|
|
) or (
|
|
params.valid_interval is not None
|
|
and params.batch_idx_train % params.valid_interval == 0
|
|
and not params.print_diagnostics
|
|
):
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
params.batch_idx_train += 1
|
|
|
|
batch_size = len(batch["text"])
|
|
|
|
tokens, features, features_lens = prepare_input(
|
|
params=params,
|
|
batch=batch,
|
|
device=device,
|
|
tokenizer=tokenizer,
|
|
return_tokens=True,
|
|
return_feature=True,
|
|
)
|
|
|
|
try:
|
|
with autocast("cuda", enabled=params.use_fp16):
|
|
loss, loss_info = compute_fbank_loss(
|
|
params=params,
|
|
model=model,
|
|
features=features,
|
|
features_lens=features_lens,
|
|
tokens=tokens,
|
|
is_training=True,
|
|
)
|
|
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
scaler.scale(loss).backward()
|
|
|
|
scheduler.step_batch(params.batch_idx_train)
|
|
# Use the number of hours of speech to adjust the learning rate
|
|
if params.lr_hours > 0:
|
|
scheduler.step_epoch(
|
|
params.batch_idx_train
|
|
* params.max_duration
|
|
* params.world_size
|
|
/ 3600
|
|
)
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
except RuntimeError as e:
|
|
if "out of memory" in str(e):
|
|
logging.info(f"out of memory error at rank {rank}")
|
|
# optimizer.zero_grad()
|
|
# duration_optimizer.zero_grad()
|
|
torch.cuda.empty_cache()
|
|
raise
|
|
continue
|
|
else:
|
|
logging.info(f"Caught exception : {e}.")
|
|
save_bad_model()
|
|
raise
|
|
except Exception as e:
|
|
logging.info(f"Caught exception : {e}.")
|
|
save_bad_model()
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if (
|
|
rank == 0
|
|
and params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
):
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.save_every_n == 0
|
|
):
|
|
save_checkpoint_with_global_batch_idx(
|
|
out_dir=params.exp_dir,
|
|
global_batch_idx=params.batch_idx_train,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
remove_checkpoints(
|
|
out_dir=params.exp_dir,
|
|
topk=params.keep_last_k,
|
|
rank=rank,
|
|
)
|
|
if params.batch_idx_train % 100 == 0 and params.use_fp16:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
|
|
if cur_grad_scale < 1024.0 or (
|
|
cur_grad_scale < 4096.0 and params.batch_idx_train % 400 == 0
|
|
):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
if cur_grad_scale < 0.01:
|
|
if not saved_bad_model:
|
|
save_bad_model(suffix="-first-warning")
|
|
saved_bad_model = True
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
save_bad_model()
|
|
raise RuntimeError(
|
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
|
)
|
|
|
|
if params.batch_idx_train % params.log_interval == 0:
|
|
cur_lr = max(scheduler.get_last_lr())
|
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
|
f"global_batch_idx: {params.batch_idx_train}, batch size: {batch_size}, "
|
|
f"loss[{loss_info}], tot_loss[{tot_loss}], "
|
|
f"cur_lr: {cur_lr:.2e}, "
|
|
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
if params.use_fp16:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
|
)
|
|
|
|
loss_value = tot_loss["loss"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
tokenizer: TokenizerEmilia,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
|
|
model.eval()
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
|
|
# used to summary the stats over iterations
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
tokens, features, features_lens = prepare_input(
|
|
params=params,
|
|
batch=batch,
|
|
device=device,
|
|
tokenizer=tokenizer,
|
|
return_tokens=True,
|
|
return_feature=True,
|
|
)
|
|
|
|
loss, loss_info = compute_fbank_loss(
|
|
params=params,
|
|
model=model,
|
|
features=features,
|
|
features_lens=features_lens,
|
|
tokens=tokens,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
os.makedirs(f"{params.exp_dir}/fbank", exist_ok=True)
|
|
|
|
logging.info("Training started")
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"Device: {device}")
|
|
|
|
if params.dataset == "emilia":
|
|
tokenizer = TokenizerEmilia(
|
|
token_file=params.token_file, token_type=params.token_type
|
|
)
|
|
elif params.dataset == "libritts":
|
|
tokenizer = TokenizerLibriTTS(
|
|
token_file=params.token_file, token_type=params.token_type
|
|
)
|
|
params.vocab_size = tokenizer.vocab_size
|
|
params.pad_id = tokenizer.pad_id
|
|
|
|
params.device = device
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
|
|
model = get_model(params)
|
|
if params.checkpoint is not None:
|
|
logging.info(f"Loading pre-trained model from {params.checkpoint}")
|
|
_ = load_checkpoint(filename=params.checkpoint, model=model, strict=True)
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of parameters : {num_param}")
|
|
|
|
model_avg: Optional[nn.Module] = None
|
|
if rank == 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
if params.start_epoch > 1:
|
|
checkpoints = resume_checkpoint(params=params, model=model, model_avg=model_avg)
|
|
|
|
model = model.to(device)
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
|
|
|
optimizer = ScaledAdam(
|
|
get_parameter_groups_with_lrs(
|
|
model,
|
|
lr=params.base_lr,
|
|
include_names=True,
|
|
),
|
|
lr=params.base_lr, # should have no effect
|
|
clipping_scale=2.0,
|
|
)
|
|
|
|
assert params.lr_hours >= 0
|
|
if params.lr_hours > 0:
|
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_hours)
|
|
else:
|
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
|
|
|
scaler = GradScaler("cuda", enabled=params.use_fp16)
|
|
|
|
if params.start_epoch > 1 and checkpoints is not None:
|
|
# load state_dict for optimizers
|
|
if "optimizer" in checkpoints:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
# load state_dict for schedulers
|
|
if "scheduler" in checkpoints:
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
512
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
def remove_short_and_long_utt_emilia(c: Cut):
|
|
if c.duration < 1.0 or c.duration > 30.0:
|
|
return False
|
|
return True
|
|
|
|
def remove_short_and_long_utt_libritts(c: Cut):
|
|
if c.duration < 1.0 or c.duration > 20.0:
|
|
return False
|
|
return True
|
|
|
|
datamodule = TtsDataModule(args)
|
|
if params.dataset == "emilia":
|
|
train_cuts = CutSet.mux(
|
|
datamodule.train_emilia_EN_cuts(),
|
|
datamodule.train_emilia_ZH_cuts(),
|
|
weights=[46000, 49000],
|
|
)
|
|
train_cuts = train_cuts.filter(remove_short_and_long_utt_emilia)
|
|
dev_cuts = CutSet.mux(
|
|
datamodule.dev_emilia_EN_cuts(),
|
|
datamodule.dev_emilia_ZH_cuts(),
|
|
weights=[0.5, 0.5],
|
|
)
|
|
elif params.dataset == "libritts":
|
|
train_cuts = datamodule.train_libritts_cuts()
|
|
train_cuts = train_cuts.filter(remove_short_and_long_utt_libritts)
|
|
dev_cuts = datamodule.dev_libritts_cuts()
|
|
|
|
train_dl = datamodule.train_dataloaders(train_cuts)
|
|
|
|
valid_dl = datamodule.dev_dataloaders(dev_cuts)
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
logging.info(f"Start epoch {epoch}")
|
|
|
|
if params.lr_hours == 0:
|
|
scheduler.step_epoch(epoch - 1)
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
tokenizer=tokenizer,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint(
|
|
filename=filename,
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if rank == 0:
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
TtsDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
main()
|