mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
210 lines
6.2 KiB
Python
Executable File
210 lines
6.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2022 Xiaomi Corporation
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
This script loads checkpoints and averages them.
|
|
|
|
(1) Average ZipVoice models before distill:
|
|
python3 ./zipvoice/generate_averaged_model.py \
|
|
--epoch 11 \
|
|
--avg 4 \
|
|
--distill 0 \
|
|
--token-file data/tokens_emilia.txt \
|
|
--exp-dir ./zipvoice/exp_zipvoice
|
|
|
|
It will generate a file `epoch-11-avg-14.pt` in the given `exp_dir`.
|
|
You can later load it by `torch.load("epoch-11-avg-4.pt")`.
|
|
|
|
(2) Average ZipVoice-Distill models (the first stage model):
|
|
|
|
python3 ./zipvoice/generate_averaged_model.py \
|
|
--iter 60000 \
|
|
--avg 7 \
|
|
--distill 1 \
|
|
--token-file data/tokens_emilia.txt \
|
|
--exp-dir ./zipvoice/exp_zipvoice_distill_1stage
|
|
"""
|
|
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from model import get_distill_model, get_model
|
|
from tokenizer import TokenizerEmilia, TokenizerLibriTTS
|
|
from train_flow import add_model_arguments, get_params
|
|
|
|
from icefall.checkpoint import average_checkpoints_with_averaged_model, find_checkpoints
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=11,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=4,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' or --iter",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipvoice/exp_zipvoice",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--distill",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use distill model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
default="emilia",
|
|
choices=["emilia", "libritts"],
|
|
help="The used training dataset for the model to inference",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
if params.dataset == "emilia":
|
|
tokenizer = TokenizerEmilia(
|
|
token_file=params.token_file, token_type=params.token_type
|
|
)
|
|
elif params.dataset == "libritts":
|
|
tokenizer = TokenizerLibriTTS(
|
|
token_file=params.token_file, token_type=params.token_type
|
|
)
|
|
|
|
params.vocab_size = tokenizer.vocab_size
|
|
params.pad_id = tokenizer.pad_id
|
|
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
print("Script started")
|
|
|
|
params.device = torch.device("cpu")
|
|
print(f"Device: {params.device}")
|
|
|
|
print("About to create model")
|
|
if params.distill:
|
|
model = get_distill_model(params)
|
|
else:
|
|
model = get_model(params)
|
|
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
print(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(params.device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=params.device,
|
|
),
|
|
strict=True,
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
print(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(params.device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=params.device,
|
|
),
|
|
strict=True,
|
|
)
|
|
if params.iter > 0:
|
|
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
|
|
else:
|
|
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
torch.save({"model": model.state_dict()}, filename)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
print(f"Number of model parameters: {num_param}")
|
|
|
|
print("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|