icefall/egs/zipvoice/zipvoice/generate_averaged_model.py
2025-06-16 09:45:34 +08:00

210 lines
6.2 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
This script loads checkpoints and averages them.
(1) Average ZipVoice models before distill:
python3 ./zipvoice/generate_averaged_model.py \
--epoch 11 \
--avg 4 \
--distill 0 \
--token-file data/tokens_emilia.txt \
--exp-dir ./zipvoice/exp_zipvoice
It will generate a file `epoch-11-avg-14.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-11-avg-4.pt")`.
(2) Average ZipVoice-Distill models (the first stage model):
python3 ./zipvoice/generate_averaged_model.py \
--iter 60000 \
--avg 7 \
--distill 1 \
--token-file data/tokens_emilia.txt \
--exp-dir ./zipvoice/exp_zipvoice_distill_1stage
"""
import argparse
from pathlib import Path
import torch
from model import get_distill_model, get_model
from tokenizer import TokenizerEmilia, TokenizerLibriTTS
from train_flow import add_model_arguments, get_params
from icefall.checkpoint import average_checkpoints_with_averaged_model, find_checkpoints
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=11,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=4,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' or --iter",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipvoice/exp_zipvoice",
help="The experiment dir",
)
parser.add_argument(
"--distill",
type=str2bool,
default=False,
help="Whether to use distill model. ",
)
parser.add_argument(
"--dataset",
type=str,
default="emilia",
choices=["emilia", "libritts"],
help="The used training dataset for the model to inference",
)
add_model_arguments(parser)
return parser
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
if params.dataset == "emilia":
tokenizer = TokenizerEmilia(
token_file=params.token_file, token_type=params.token_type
)
elif params.dataset == "libritts":
tokenizer = TokenizerLibriTTS(
token_file=params.token_file, token_type=params.token_type
)
params.vocab_size = tokenizer.vocab_size
params.pad_id = tokenizer.pad_id
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
print("Script started")
params.device = torch.device("cpu")
print(f"Device: {params.device}")
print("About to create model")
if params.distill:
model = get_distill_model(params)
else:
model = get_model(params)
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
print(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(params.device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=params.device,
),
strict=True,
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
print(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(params.device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=params.device,
),
strict=True,
)
if params.iter > 0:
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
else:
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
print("Done!")
if __name__ == "__main__":
main()