mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
- Added CHiME-4 dataset integration in asr_datamodule.py - Added Hugging Face upload script - Added RIR augmentation - Added Self-Distillation Training
401 lines
19 KiB
Plaintext
401 lines
19 KiB
Plaintext
nohup: ignoring input
|
|
- RIR Path: data/manifests/rir.scp
|
|
- RIR Probability: 0.5
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall'
|
|
To add an exception for this directory, call:
|
|
|
|
git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall
|
|
2025-08-26 22:40:01,609 INFO [train.py:958] (0/3) Training started
|
|
2025-08-26 22:40:01,610 INFO [train.py:959] (0/3) Warmup steps: 30000
|
|
2025-08-26 22:40:01,610 INFO [train.py:960] (0/3) {
|
|
"att_rate": 0.0,
|
|
"attention_dim": 256,
|
|
"batch_idx_train": 0,
|
|
"beam_size": 10,
|
|
"best_train_epoch": -1,
|
|
"best_train_loss": Infinity,
|
|
"best_valid_epoch": -1,
|
|
"best_valid_loss": Infinity,
|
|
"bpe_dir": "data/lang_bpe_5000",
|
|
"bucketing_sampler": true,
|
|
"concatenate_cuts": true,
|
|
"drop_last": true,
|
|
"duration_factor": 1.0,
|
|
"enable_musan": true,
|
|
"enable_rir": true,
|
|
"enable_spec_aug": true,
|
|
"enable_validation": true,
|
|
"env_info": {
|
|
"IP address": "127.0.1.1",
|
|
"hostname": "Attention",
|
|
"icefall-git-branch": null,
|
|
"icefall-git-date": null,
|
|
"icefall-git-sha1": null,
|
|
"icefall-path": "/tmp/icefall",
|
|
"k2-build-type": "Release",
|
|
"k2-git-date": "Mon Jul 14 07:51:57 2025",
|
|
"k2-git-sha1": "9399d1b01a6309e54b62d885e93209bcd66c1e7d",
|
|
"k2-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/k2/__init__.py",
|
|
"k2-version": "1.24.4",
|
|
"k2-with-cuda": true,
|
|
"lhotse-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/__init__.py",
|
|
"lhotse-version": "1.31.0.dev+git.273e312.clean",
|
|
"python-version": "3.8",
|
|
"torch-cuda-available": true,
|
|
"torch-cuda-version": "12.1",
|
|
"torch-version": "2.4.0+cu121"
|
|
},
|
|
"exp_dir": "conformer_ctc/exp",
|
|
"feature_dim": 80,
|
|
"full_libri": true,
|
|
"gap": 1.0,
|
|
"input_strategy": "PrecomputedFeatures",
|
|
"lang_dir": "data/lang_bpe_5000",
|
|
"log_interval": 50,
|
|
"lr_factor": 5.0,
|
|
"manifest_dir": "data/fbank",
|
|
"master_port": 12345,
|
|
"max_active_states": 10000,
|
|
"max_duration": 300,
|
|
"method": "ctc-decoding",
|
|
"min_active_states": 30,
|
|
"mini_libri": false,
|
|
"nhead": 4,
|
|
"num_buckets": 200,
|
|
"num_decoder_layers": 0,
|
|
"num_epochs": 100,
|
|
"num_workers": 24,
|
|
"on_the_fly_feats": false,
|
|
"output_beam": 8.0,
|
|
"reduction": "sum",
|
|
"reset_interval": 200,
|
|
"return_cuts": true,
|
|
"rir_cuts_path": "data/manifests/rir.scp",
|
|
"rir_prob": 0.5,
|
|
"sanity_check": true,
|
|
"search_beam": 20.0,
|
|
"seed": 42,
|
|
"shuffle": true,
|
|
"spec_aug_time_warp_factor": 80,
|
|
"start_epoch": 0,
|
|
"subsampling_factor": 4,
|
|
"tensorboard": true,
|
|
"use_double_scores": true,
|
|
"use_feat_batchnorm": true,
|
|
"valid_interval": 5000,
|
|
"valid_max_duration": 15,
|
|
"validation_decoding_method": "greedy",
|
|
"validation_output_beam": 5.0,
|
|
"validation_search_beam": 10.0,
|
|
"validation_skip_wer": false,
|
|
"warm_step": 30000,
|
|
"weight_decay": 1e-06,
|
|
"world_size": 3
|
|
}
|
|
2025-08-26 22:40:01,734 INFO [train.py:958] (1/3) Training started
|
|
2025-08-26 22:40:01,734 INFO [train.py:959] (1/3) Warmup steps: 30000
|
|
2025-08-26 22:40:01,734 INFO [train.py:960] (1/3) {
|
|
"att_rate": 0.0,
|
|
"attention_dim": 256,
|
|
"batch_idx_train": 0,
|
|
"beam_size": 10,
|
|
"best_train_epoch": -1,
|
|
"best_train_loss": Infinity,
|
|
"best_valid_epoch": -1,
|
|
"best_valid_loss": Infinity,
|
|
"bpe_dir": "data/lang_bpe_5000",
|
|
"bucketing_sampler": true,
|
|
"concatenate_cuts": true,
|
|
"drop_last": true,
|
|
"duration_factor": 1.0,
|
|
"enable_musan": true,
|
|
"enable_rir": true,
|
|
"enable_spec_aug": true,
|
|
"enable_validation": true,
|
|
"env_info": {
|
|
"IP address": "127.0.1.1",
|
|
"hostname": "Attention",
|
|
"icefall-git-branch": null,
|
|
"icefall-git-date": null,
|
|
"icefall-git-sha1": null,
|
|
"icefall-path": "/tmp/icefall",
|
|
"k2-build-type": "Release",
|
|
"k2-git-date": "Mon Jul 14 07:51:57 2025",
|
|
"k2-git-sha1": "9399d1b01a6309e54b62d885e93209bcd66c1e7d",
|
|
"k2-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/k2/__init__.py",
|
|
"k2-version": "1.24.4",
|
|
"k2-with-cuda": true,
|
|
"lhotse-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/__init__.py",
|
|
"lhotse-version": "1.31.0.dev+git.273e312.clean",
|
|
"python-version": "3.8",
|
|
"torch-cuda-available": true,
|
|
"torch-cuda-version": "12.1",
|
|
"torch-version": "2.4.0+cu121"
|
|
},
|
|
"exp_dir": "conformer_ctc/exp",
|
|
"feature_dim": 80,
|
|
"full_libri": true,
|
|
"gap": 1.0,
|
|
"input_strategy": "PrecomputedFeatures",
|
|
"lang_dir": "data/lang_bpe_5000",
|
|
"log_interval": 50,
|
|
"lr_factor": 5.0,
|
|
"manifest_dir": "data/fbank",
|
|
"master_port": 12345,
|
|
"max_active_states": 10000,
|
|
"max_duration": 300,
|
|
"method": "ctc-decoding",
|
|
"min_active_states": 30,
|
|
"mini_libri": false,
|
|
"nhead": 4,
|
|
"num_buckets": 200,
|
|
"num_decoder_layers": 0,
|
|
"num_epochs": 100,
|
|
"num_workers": 24,
|
|
"on_the_fly_feats": false,
|
|
"output_beam": 8.0,
|
|
"reduction": "sum",
|
|
"reset_interval": 200,
|
|
"return_cuts": true,
|
|
"rir_cuts_path": "data/manifests/rir.scp",
|
|
"rir_prob": 0.5,
|
|
"sanity_check": true,
|
|
"search_beam": 20.0,
|
|
"seed": 42,
|
|
"shuffle": true,
|
|
"spec_aug_time_warp_factor": 80,
|
|
"start_epoch": 0,
|
|
"subsampling_factor": 4,
|
|
"tensorboard": true,
|
|
"use_double_scores": true,
|
|
"use_feat_batchnorm": true,
|
|
"valid_interval": 5000,
|
|
"valid_max_duration": 15,
|
|
"validation_decoding_method": "greedy",
|
|
"validation_output_beam": 5.0,
|
|
"validation_search_beam": 10.0,
|
|
"validation_skip_wer": false,
|
|
"warm_step": 30000,
|
|
"weight_decay": 1e-06,
|
|
"world_size": 3
|
|
}
|
|
2025-08-26 22:40:01,758 INFO [train.py:958] (2/3) Training started
|
|
2025-08-26 22:40:01,758 INFO [train.py:959] (2/3) Warmup steps: 30000
|
|
2025-08-26 22:40:01,758 INFO [train.py:960] (2/3) {
|
|
"att_rate": 0.0,
|
|
"attention_dim": 256,
|
|
"batch_idx_train": 0,
|
|
"beam_size": 10,
|
|
"best_train_epoch": -1,
|
|
"best_train_loss": Infinity,
|
|
"best_valid_epoch": -1,
|
|
"best_valid_loss": Infinity,
|
|
"bpe_dir": "data/lang_bpe_5000",
|
|
"bucketing_sampler": true,
|
|
"concatenate_cuts": true,
|
|
"drop_last": true,
|
|
"duration_factor": 1.0,
|
|
"enable_musan": true,
|
|
"enable_rir": true,
|
|
"enable_spec_aug": true,
|
|
"enable_validation": true,
|
|
"env_info": {
|
|
"IP address": "127.0.1.1",
|
|
"hostname": "Attention",
|
|
"icefall-git-branch": null,
|
|
"icefall-git-date": null,
|
|
"icefall-git-sha1": null,
|
|
"icefall-path": "/tmp/icefall",
|
|
"k2-build-type": "Release",
|
|
"k2-git-date": "Mon Jul 14 07:51:57 2025",
|
|
"k2-git-sha1": "9399d1b01a6309e54b62d885e93209bcd66c1e7d",
|
|
"k2-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/k2/__init__.py",
|
|
"k2-version": "1.24.4",
|
|
"k2-with-cuda": true,
|
|
"lhotse-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/__init__.py",
|
|
"lhotse-version": "1.31.0.dev+git.273e312.clean",
|
|
"python-version": "3.8",
|
|
"torch-cuda-available": true,
|
|
"torch-cuda-version": "12.1",
|
|
"torch-version": "2.4.0+cu121"
|
|
},
|
|
"exp_dir": "conformer_ctc/exp",
|
|
"feature_dim": 80,
|
|
"full_libri": true,
|
|
"gap": 1.0,
|
|
"input_strategy": "PrecomputedFeatures",
|
|
"lang_dir": "data/lang_bpe_5000",
|
|
"log_interval": 50,
|
|
"lr_factor": 5.0,
|
|
"manifest_dir": "data/fbank",
|
|
"master_port": 12345,
|
|
"max_active_states": 10000,
|
|
"max_duration": 300,
|
|
"method": "ctc-decoding",
|
|
"min_active_states": 30,
|
|
"mini_libri": false,
|
|
"nhead": 4,
|
|
"num_buckets": 200,
|
|
"num_decoder_layers": 0,
|
|
"num_epochs": 100,
|
|
"num_workers": 24,
|
|
"on_the_fly_feats": false,
|
|
"output_beam": 8.0,
|
|
"reduction": "sum",
|
|
"reset_interval": 200,
|
|
"return_cuts": true,
|
|
"rir_cuts_path": "data/manifests/rir.scp",
|
|
"rir_prob": 0.5,
|
|
"sanity_check": true,
|
|
"search_beam": 20.0,
|
|
"seed": 42,
|
|
"shuffle": true,
|
|
"spec_aug_time_warp_factor": 80,
|
|
"start_epoch": 0,
|
|
"subsampling_factor": 4,
|
|
"tensorboard": true,
|
|
"use_double_scores": true,
|
|
"use_feat_batchnorm": true,
|
|
"valid_interval": 5000,
|
|
"valid_max_duration": 15,
|
|
"validation_decoding_method": "greedy",
|
|
"validation_output_beam": 5.0,
|
|
"validation_search_beam": 10.0,
|
|
"validation_skip_wer": false,
|
|
"warm_step": 30000,
|
|
"weight_decay": 1e-06,
|
|
"world_size": 3
|
|
}
|
|
2025-08-26 22:40:01,977 INFO [train.py:1012] (0/3) About to create model
|
|
2025-08-26 22:40:02,103 INFO [train.py:1012] (1/3) About to create model
|
|
2025-08-26 22:40:02,125 INFO [train.py:1012] (2/3) About to create model
|
|
/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer
|
|
warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
|
|
2025-08-26 22:40:03,809 INFO [asr_datamodule.py:539] (0/3) About to get the shuffled train-clean-100, train-clean-360 and train-other-500 cuts
|
|
2025-08-26 22:40:03,811 INFO [asr_datamodule.py:303] (0/3) Enable MUSAN
|
|
2025-08-26 22:40:03,811 INFO [asr_datamodule.py:304] (0/3) About to get Musan cuts
|
|
/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer
|
|
warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
|
|
2025-08-26 22:40:03,957 INFO [asr_datamodule.py:539] (2/3) About to get the shuffled train-clean-100, train-clean-360 and train-other-500 cuts
|
|
/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer
|
|
warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
|
|
2025-08-26 22:40:03,957 INFO [asr_datamodule.py:539] (1/3) About to get the shuffled train-clean-100, train-clean-360 and train-other-500 cuts
|
|
2025-08-26 22:40:03,958 INFO [asr_datamodule.py:303] (2/3) Enable MUSAN
|
|
2025-08-26 22:40:03,958 INFO [asr_datamodule.py:304] (2/3) About to get Musan cuts
|
|
2025-08-26 22:40:03,959 INFO [asr_datamodule.py:303] (1/3) Enable MUSAN
|
|
2025-08-26 22:40:03,959 INFO [asr_datamodule.py:304] (1/3) About to get Musan cuts
|
|
2025-08-26 22:40:06,823 INFO [asr_datamodule.py:313] (2/3) Enable RIR (Room Impulse Response) augmentation
|
|
2025-08-26 22:40:06,823 INFO [asr_datamodule.py:314] (2/3) Loading RIR paths from data/manifests/rir.scp
|
|
2025-08-26 22:40:06,846 INFO [asr_datamodule.py:321] (2/3) Found 60536 RIR files
|
|
2025-08-26 22:40:06,847 INFO [asr_datamodule.py:313] (0/3) Enable RIR (Room Impulse Response) augmentation
|
|
2025-08-26 22:40:06,847 INFO [asr_datamodule.py:314] (0/3) Loading RIR paths from data/manifests/rir.scp
|
|
2025-08-26 22:40:06,863 INFO [asr_datamodule.py:313] (1/3) Enable RIR (Room Impulse Response) augmentation
|
|
2025-08-26 22:40:06,863 INFO [asr_datamodule.py:314] (1/3) Loading RIR paths from data/manifests/rir.scp
|
|
2025-08-26 22:40:06,863 INFO [asr_datamodule.py:335] (2/3) Using cut concatenation with duration factor 1.0 and gap 1.0.
|
|
2025-08-26 22:40:06,863 INFO [asr_datamodule.py:350] (2/3) Enable SpecAugment
|
|
2025-08-26 22:40:06,864 INFO [asr_datamodule.py:351] (2/3) Time warp factor: 80
|
|
2025-08-26 22:40:06,864 INFO [asr_datamodule.py:361] (2/3) Num frame mask: 10
|
|
2025-08-26 22:40:06,864 INFO [asr_datamodule.py:381] (2/3) About to create train dataset
|
|
2025-08-26 22:40:06,864 INFO [asr_datamodule.py:391] (2/3) Train dataset augmentations: Cut transforms: ['CutConcatenate', 'CutMix', 'RandomRIRTransform']; Input transforms: ['SpecAugment']
|
|
2025-08-26 22:40:06,864 INFO [asr_datamodule.py:395] (2/3) Train dataset: 3 cut transforms, 1 input transforms
|
|
2025-08-26 22:40:06,864 INFO [asr_datamodule.py:406] (2/3) Using DynamicBucketingSampler.
|
|
2025-08-26 22:40:06,870 INFO [asr_datamodule.py:321] (0/3) Found 60536 RIR files
|
|
2025-08-26 22:40:06,885 INFO [asr_datamodule.py:321] (1/3) Found 60536 RIR files
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:335] (0/3) Using cut concatenation with duration factor 1.0 and gap 1.0.
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:350] (0/3) Enable SpecAugment
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:351] (0/3) Time warp factor: 80
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:361] (0/3) Num frame mask: 10
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:381] (0/3) About to create train dataset
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:391] (0/3) Train dataset augmentations: Cut transforms: ['CutConcatenate', 'CutMix', 'RandomRIRTransform']; Input transforms: ['SpecAugment']
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:395] (0/3) Train dataset: 3 cut transforms, 1 input transforms
|
|
2025-08-26 22:40:06,887 INFO [asr_datamodule.py:406] (0/3) Using DynamicBucketingSampler.
|
|
2025-08-26 22:40:06,902 INFO [asr_datamodule.py:335] (1/3) Using cut concatenation with duration factor 1.0 and gap 1.0.
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:350] (1/3) Enable SpecAugment
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:351] (1/3) Time warp factor: 80
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:361] (1/3) Num frame mask: 10
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:381] (1/3) About to create train dataset
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:391] (1/3) Train dataset augmentations: Cut transforms: ['CutConcatenate', 'CutMix', 'RandomRIRTransform']; Input transforms: ['SpecAugment']
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:395] (1/3) Train dataset: 3 cut transforms, 1 input transforms
|
|
2025-08-26 22:40:06,903 INFO [asr_datamodule.py:406] (1/3) Using DynamicBucketingSampler.
|
|
2025-08-26 22:40:07,548 INFO [asr_datamodule.py:424] (2/3) About to create train dataloader
|
|
2025-08-26 22:40:07,551 INFO [asr_datamodule.py:556] (2/3) About to get dev-clean cuts
|
|
2025-08-26 22:40:07,552 INFO [asr_datamodule.py:457] (2/3) Validation max_duration: 15 seconds
|
|
2025-08-26 22:40:07,552 INFO [asr_datamodule.py:459] (2/3) About to create dev dataset
|
|
2025-08-26 22:40:07,561 INFO [asr_datamodule.py:424] (0/3) About to create train dataloader
|
|
2025-08-26 22:40:07,564 INFO [asr_datamodule.py:556] (0/3) About to get dev-clean cuts
|
|
2025-08-26 22:40:07,565 INFO [asr_datamodule.py:457] (0/3) Validation max_duration: 15 seconds
|
|
2025-08-26 22:40:07,565 INFO [asr_datamodule.py:459] (0/3) About to create dev dataset
|
|
2025-08-26 22:40:07,586 INFO [asr_datamodule.py:424] (1/3) About to create train dataloader
|
|
2025-08-26 22:40:07,589 INFO [asr_datamodule.py:556] (1/3) About to get dev-clean cuts
|
|
2025-08-26 22:40:07,590 INFO [asr_datamodule.py:457] (1/3) Validation max_duration: 15 seconds
|
|
2025-08-26 22:40:07,590 INFO [asr_datamodule.py:459] (1/3) About to create dev dataset
|
|
2025-08-26 22:40:07,718 INFO [asr_datamodule.py:476] (2/3) About to create dev dataloader
|
|
2025-08-26 22:40:07,718 INFO [train.py:1068] (2/3) Validation set size: 2703 utterances
|
|
2025-08-26 22:40:07,718 INFO [train.py:1129] (2/3) Sanity check -- see if any of the batches in epoch 0 would cause OOM.
|
|
2025-08-26 22:40:07,732 INFO [asr_datamodule.py:476] (0/3) About to create dev dataloader
|
|
2025-08-26 22:40:07,732 INFO [train.py:1068] (0/3) Validation set size: 2703 utterances
|
|
2025-08-26 22:40:07,732 INFO [train.py:1129] (0/3) Sanity check -- see if any of the batches in epoch 0 would cause OOM.
|
|
2025-08-26 22:40:07,756 INFO [asr_datamodule.py:476] (1/3) About to create dev dataloader
|
|
2025-08-26 22:40:07,757 INFO [train.py:1068] (1/3) Validation set size: 2703 utterances
|
|
2025-08-26 22:40:07,757 INFO [train.py:1129] (1/3) Sanity check -- see if any of the batches in epoch 0 would cause OOM.
|
|
Loaded 100 RIR recordings for augmentation
|
|
W0826 22:44:22.869694 125173910820672 torch/multiprocessing/spawn.py:146] Terminating process 1270919 via signal SIGTERM
|
|
W0826 22:44:22.870538 125173910820672 torch/multiprocessing/spawn.py:146] Terminating process 1270920 via signal SIGTERM
|
|
Traceback (most recent call last):
|
|
File "./conformer_ctc/train.py", line 1415, in <module>
|
|
main()
|
|
File "./conformer_ctc/train.py", line 1408, in main
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 282, in spawn
|
|
return start_processes(fn, args, nprocs, join, daemon, start_method="spawn")
|
|
File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 238, in start_processes
|
|
while not context.join():
|
|
File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 189, in join
|
|
raise ProcessRaisedException(msg, error_index, failed_process.pid)
|
|
torch.multiprocessing.spawn.ProcessRaisedException:
|
|
|
|
-- Process 0 terminated with the following error:
|
|
Traceback (most recent call last):
|
|
File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 76, in _wrap
|
|
fn(i, *args)
|
|
File "/home/hdd2/jenny/ASRToolkit/icefall/egs/librispeech/ASR/conformer_ctc/train.py", line 1071, in run
|
|
scan_pessimistic_batches_for_oom(
|
|
File "/home/hdd2/jenny/ASRToolkit/icefall/egs/librispeech/ASR/conformer_ctc/train.py", line 1134, in scan_pessimistic_batches_for_oom
|
|
batch = train_dl.dataset[cuts]
|
|
File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/dataset/speech_recognition.py", line 109, in __getitem__
|
|
cuts = tnfm(cuts)
|
|
TypeError: __call__() missing 1 required positional argument: 'sampling_rate'
|
|
|