icefall/egs/librispeech/ASR/train_noisy.sh
jaeeunbaik 915e8e399c Add CHiME-4 dataset, RIR and Self-Distillation
- Added CHiME-4 dataset integration in asr_datamodule.py
- Added Hugging Face upload script
- Added RIR augmentation
- Added Self-Distillation Training
2025-08-27 16:11:20 +09:00

97 lines
3.9 KiB
Bash

#!/bin/# Data Augmentation Controls (modify these as needed)
enable_spec_aug=true # SpecAugment (frequency/time masking)
enable_musan=true # MUSAN noise augmentation
enable_rir=true # RIR (Room Impulse Response) augmentation - FIXED AND RE-ENABLED
enable_cutmix=true # Cut mixing: 두 오디오의 시간 구간을 섞음
enable_concatenate=true # Cut concatenation: 짧은 발화들을 연결하여 패딩 최소화
# train.sh - LibriSpeech ASR Training Script with Data Augmentation Control
# Usage: bash train.sh
set -euo pipefail
# Data Augmentation Controls (modify these as needed)
enable_spec_aug=true # SpecAugment (frequency/time masking)
enable_musan=true # MUSAN noise augmentation
enable_rir=true # RIR (Room Impulse Response) augmentation - RE-ENABLED
enable_cutmix=true # Cut mixing: 두 오디오의 시간 구간을 섞음
enable_concatenate=true # Cut concatenation: 짧은 발화들을 연결하여 패딩 최소화
# RIR settings (used when enable_rir=true)
rir_cuts_path="data/manifests/rir.scp" # Path to RIR file list (updated to use rir.scp)
rir_prob=0.5 # Probability of applying RIR
# Training parameters
world_size=4 # Multi-GPU restored since test passed
max_duration=300 # Further reduced from 320 to save memory
valid_max_duration=15 # Very small for multi-GPU safety
num_buckets=200 # Reduced for memory saving
num_workers=24 # Much smaller to save memory
warm_step=40000
lang_dir="./data/lang_bpe_5000"
method="ctc-decoding"
# Model parameters
att_rate=0 # 0 for pure CTC, >0 for CTC+Attention
num_decoder_layers=0 # 0 for pure CTC
# Other settings
start_epoch=0
master_port=12345
sanity_check=false # Set to true for OOM checking (slower)
# Validation settings
enable_validation=true # Set to false to disable validation completely
valid_interval=5000 # Increased from 50 to allow more training before validation
# Validation decoding settings
validation_decoding_method="greedy" # "greedy" or "beam" - use greedy for faster validation
validation_search_beam=10.0 # Beam size for validation (only used if method="beam")
validation_output_beam=5.0 # Output beam for validation (only used if method="beam")
validation_skip_wer=false # Skip WER computation for even faster validation (디버깅용 - 이제 false로 변경)
if [ "$enable_rir" = "true" ]; then
echo " - RIR Path: $rir_cuts_path"
echo " - RIR Probability: $rir_prob"
fi
# gdb --args python ./conformer_ctc/train.py
if [ -z "${PYTHONPATH:-}" ]; then
export PYTHONPATH="/tmp/icefall"
else
export PYTHONPATH="${PYTHONPATH}:/tmp/icefall"
fi
python3 ./conformer_ctc/train.py \
--master-port $master_port \
--sanity-check $sanity_check \
--world-size $world_size \
--warm-step $warm_step \
--start-epoch $start_epoch \
--att-rate $att_rate \
--num-decoder-layers $num_decoder_layers \
--num-workers $num_workers \
--enable-spec-aug $enable_spec_aug \
--enable-musan $enable_musan \
--enable-rir $enable_rir \
--rir-cuts-path $rir_cuts_path \
--rir-prob $rir_prob \
--on-the-fly-feats true \
--max-duration $max_duration \
--valid-max-duration $valid_max_duration \
--num-buckets $num_buckets \
--bucketing-sampler true \
--concatenate-cuts $enable_concatenate \
--duration-factor 1.0 \
--drop-last true \
--shuffle true \
--lang-dir $lang_dir \
--method $method \
--enable-validation $enable_validation \
--valid-interval $valid_interval \
--validation-decoding-method $validation_decoding_method \
--validation-search-beam $validation_search_beam \
--validation-output-beam $validation_output_beam \
--validation-skip-wer $validation_skip_wer