Zengwei Yao a9dccdc33f
Streaming merge (#369)
* Remove ReLU in attention

* Adding diagnostics code...

* Refactor/simplify ConformerEncoder

* First version of rand-combine iterated-training-like idea.

* Improvements to diagnostics (RE those with 1 dim

* Add pelu to this good-performing setup..

* Small bug fixes/imports

* Add baseline for the PeLU expt, keeping only the small normalization-related changes.

* pelu_base->expscale, add 2xExpScale in subsampling, and in feedforward units.

* Double learning rate of exp-scale units

* Combine ExpScale and swish for memory reduction

* Add import

* Fix backprop bug

* Fix bug in diagnostics

* Increase scale on Scale from 4 to 20

* Increase scale from 20 to 50.

* Fix duplicate Swish; replace norm+swish with swish+exp-scale in convolution module

* Reduce scale from 50 to 20

* Add deriv-balancing code

* Double the threshold in brelu; slightly increase max_factor.

* Fix exp dir

* Convert swish nonlinearities to ReLU

* Replace relu with swish-squared.

* Restore ConvolutionModule to state before changes; change all Swish,Swish(Swish) to SwishOffset.

* Replace norm on input layer with scale of 0.1.

* Extensions to diagnostics code

* Update diagnostics

* Add BasicNorm module

* Replace most normalizations with scales (still have norm in conv)

* Change exp dir

* Replace norm in ConvolutionModule with a scaling factor.

* use nonzero threshold in DerivBalancer

* Add min-abs-value 0.2

* Fix dirname

* Change min-abs threshold from 0.2 to 0.5

* Scale up pos_bias_u and pos_bias_v before use.

* Reduce max_factor to 0.01

* Fix q*scaling logic

* Change max_factor in DerivBalancer from 0.025 to 0.01; fix scaling code.

* init 1st conv module to smaller variance

* Change how scales are applied; fix residual bug

* Reduce min_abs from 0.5 to 0.2

* Introduce in_scale=0.5 for SwishExpScale

* Fix scale from 0.5 to 2.0 as I really intended..

* Set scaling on SwishExpScale

* Add identity pre_norm_final for diagnostics.

* Add learnable post-scale for mha

* Fix self.post-scale-mha

* Another rework, use scales on linear/conv

* Change dir name

* Reduce initial scaling of modules

* Bug-fix RE bias

* Cosmetic change

* Reduce initial_scale.

* Replace ExpScaleRelu with DoubleSwish()

* DoubleSwish fix

* Use learnable scales for joiner and decoder

* Add max-abs-value constraint in DerivBalancer

* Add max-abs-value

* Change dir name

* Remove ExpScale in feedforward layes.

* Reduce max-abs limit from 1000 to 100; introduce 2 DerivBalancer modules in conv layer.

* Make DoubleSwish more memory efficient

* Reduce constraints from deriv-balancer in ConvModule.

* Add warmup mode

* Remove max-positive constraint in deriv-balancing; add second DerivBalancer in conv module.

* Add some extra info to diagnostics

* Add deriv-balancer at output of embedding.

* Add more stats.

* Make epsilon in BasicNorm learnable, optionally.

* Draft of 0mean changes..

* Rework of initialization

* Fix typo

* Remove dead code

* Modifying initialization from normal->uniform; add initial_scale when initializing

* bug fix re sqrt

* Remove xscale from pos_embedding

* Remove some dead code.

* Cosmetic changes/renaming things

* Start adding some files..

* Add more files..

* update decode.py file type

* Add remaining files in pruned_transducer_stateless2

* Fix diagnostics-getting code

* Scale down pruned loss in warmup mode

* Reduce warmup scale on pruned loss form 0.1 to 0.01.

* Remove scale_speed, make swish deriv more efficient.

* Cosmetic changes to swish

* Double warm_step

* Fix bug with import

* Change initial std from 0.05 to 0.025.

* Set also scale for embedding to 0.025.

* Remove logging code that broke with newer Lhotse; fix bug with pruned_loss

* Add norm+balancer to VggSubsampling

* Incorporate changes from master into pruned_transducer_stateless2.

* Add max-abs=6, debugged version

* Change 0.025,0.05 to 0.01 in initializations

* Fix balancer code

* Whitespace fix

* Reduce initial pruned_loss scale from 0.01 to 0.0

* Increase warm_step (and valid_interval)

* Change max-abs from 6 to 10

* Change how warmup works.

* Add changes from master to decode.py, train.py

* Simplify the warmup code; max_abs 10->6

* Make warmup work by scaling layer contributions; leave residual layer-drop

* Fix bug

* Fix test mode with random layer dropout

* Add random-number-setting function in dataloader

* Fix/patch how fix_random_seed() is imported.

* Reduce layer-drop prob

* Reduce layer-drop prob after warmup to 1 in 100

* Change power of lr-schedule from -0.5 to -0.333

* Increase model_warm_step to 4k

* Change max-keep-prob to 0.95

* Refactoring and simplifying conformer and frontend

* Rework conformer, remove some code.

* Reduce 1st conv channels from 64 to 32

* Add another convolutional layer

* Fix padding bug

* Remove dropout in output layer

* Reduce speed of some components

* Initial refactoring to remove unnecessary vocab_size

* Fix RE identity

* Bug-fix

* Add final dropout to conformer

* Remove some un-used code

* Replace nn.Linear with ScaledLinear in simple joiner

* Make 2 projections..

* Reduce initial_speed

* Use initial_speed=0.5

* Reduce initial_speed further from 0.5 to 0.25

* Reduce initial_speed from 0.5 to 0.25

* Change how warmup is applied.

* Bug fix to warmup_scale

* Fix test-mode

* Remove final dropout

* Make layer dropout rate 0.075, was 0.1.

* First draft of model rework

* Various bug fixes

* Change learning speed of simple_lm_proj

* Revert transducer_stateless/ to state in upstream/master

* Fix to joiner to allow different dims

* Some cleanups

* Make training more efficient, avoid redoing some projections.

* Change how warm-step is set

* First draft of new approach to learning rates + init

* Some fixes..

* Change initialization to 0.25

* Fix type of parameter

* Fix weight decay formula by adding 1/1-beta

* Fix weight decay formula by adding 1/1-beta

* Fix checkpoint-writing

* Fix to reading scheudler from optim

* Simplified optimizer, rework somet things..

* Reduce model_warm_step from 4k to 3k

* Fix bug in lambda

* Bug-fix RE sign of target_rms

* Changing initial_speed from 0.25 to 01

* Change some defaults in LR-setting rule.

* Remove initial_speed

* Set new scheduler

* Change exponential part of lrate to be epoch based

* Fix bug

* Set 2n rule..

* Implement 2o schedule

* Make lrate rule more symmetric

* Implement 2p version of learning rate schedule.

* Refactor how learning rate is set.

* Fix import

* Modify init (#301)

* update icefall/__init__.py to import more common functions.

* update icefall/__init__.py

* make imports style consistent.

* exclude black check for icefall/__init__.py in pyproject.toml.

* Minor fixes for logging (#296)

* Minor fixes for logging

* Minor fix

* Fix dir names

* Modify beam search to be efficient with current joienr

* Fix adding learning rate to tensorboard

* Fix docs in optim.py

* Support mix precision training on the reworked model (#305)

* Add mix precision support

* Minor fixes

* Minor fixes

* Minor fixes

* Tedlium3 pruned transducer stateless (#261)

* update tedlium3-pruned-transducer-stateless-codes

* update README.md

* update README.md

* add fast beam search for decoding

* do a change for RESULTS.md

* do a change for RESULTS.md

* do a fix

* do some changes for pruned RNN-T

* Add mix precision support

* Minor fixes

* Minor fixes

* Updating RESULTS.md; fix in beam_search.py

* Fix rebase

* Code style check for librispeech pruned transducer stateless2 (#308)

* Update results for tedlium3 pruned RNN-T (#307)

* Update README.md

* Fix CI errors. (#310)

* Add more results

* Fix tensorboard log location

* Add one more epoch of full expt

* fix comments

* Add results for mixed precision with max-duration 300

* Changes for pretrained.py (tedlium3 pruned RNN-T) (#311)

* GigaSpeech recipe (#120)

* initial commit

* support download, data prep, and fbank

* on-the-fly feature extraction by default

* support BPE based lang

* support HLG for BPE

* small fix

* small fix

* chunked feature extraction by default

* Compute features for GigaSpeech by splitting the manifest.

* Fixes after review.

* Split manifests into 2000 pieces.

* set audio duration mismatch tolerance to 0.01

* small fix

* add conformer training recipe

* Add conformer.py without pre-commit checking

* lazy loading and use SingleCutSampler

* DynamicBucketingSampler

* use KaldifeatFbank to compute fbank for musan

* use pretrained language model and lexicon

* use 3gram to decode, 4gram to rescore

* Add decode.py

* Update .flake8

* Delete compute_fbank_gigaspeech.py

* Use BucketingSampler for valid and test dataloader

* Update params in train.py

* Use bpe_500

* update params in decode.py

* Decrease num_paths while CUDA OOM

* Added README

* Update RESULTS

* black

* Decrease num_paths while CUDA OOM

* Decode with post-processing

* Update results

* Remove lazy_load option

* Use default `storage_type`

* Keep the original tolerance

* Use split-lazy

* black

* Update pretrained model

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Add LG decoding (#277)

* Add LG decoding

* Add log weight pushing

* Minor fixes

* Support computing RNN-T loss with torchaudio (#316)

* Update results for torchaudio RNN-T. (#322)

* Fix some typos. (#329)

* fix fp16 option in example usage (#332)

* Support averaging models with weight tying. (#333)

* Support specifying iteration number of checkpoints for decoding. (#336)

See also #289

* Modified conformer with multi datasets (#312)

* Copy files for editing.

* Use librispeech + gigaspeech with modified conformer.

* Support specifying number of workers for on-the-fly feature extraction.

* Feature extraction code for GigaSpeech.

* Combine XL splits lazily during training.

* Fix warnings in decoding.

* Add decoding code for GigaSpeech.

* Fix decoding the gigaspeech dataset.

We have to use the decoder/joiner networks for the GigaSpeech dataset.

* Disable speed perturbe for XL subset.

* Compute the Nbest oracle WER for RNN-T decoding.

* Minor fixes.

* Minor fixes.

* Add results.

* Update results.

* Update CI.

* Update results.

* Fix style issues.

* Update results.

* Fix style issues.

* Update results. (#340)

* Update results.

* Typo fixes.

* Validate generated manifest files. (#338)

* Validate generated manifest files. (#338)

* Save batch to disk on OOM. (#343)

* Save batch to disk on OOM.

* minor fixes

* Fixes after review.

* Fix style issues.

* Fix decoding for gigaspeech in the libri + giga setup. (#345)

* Model average (#344)

* First upload of model average codes.

* minor fix

* update decode file

* update .flake8

* rename pruned_transducer_stateless3 to pruned_transducer_stateless4

* change epoch number counter starting from 1 instead of 0

* minor fix of pruned_transducer_stateless4/train.py

* refactor the checkpoint.py

* minor fix, update docs, and modify the epoch number to count from 1 in the pruned_transducer_stateless4/decode.py

* update author info

* add docs of the scaling in function average_checkpoints_with_averaged_model

* Save batch to disk on exception. (#350)

* Bug fix (#352)

* Keep model_avg on cpu (#348)

* keep model_avg on cpu

* explicitly convert model_avg to cpu

* minor fix

* remove device convertion for model_avg

* modify usage of the model device in train.py

* change model.device to next(model.parameters()).device for decoding

* assert params.start_epoch>0

* assert params.start_epoch>0, params.start_epoch

* Do some changes for aishell/ASR/transducer stateless/export.py (#347)

* do some changes for aishell/ASR/transducer_stateless/export.py

* Support decoding with averaged model when using --iter (#353)

* support decoding with averaged model when using --iter

* minor fix

* monir fix of copyright date

* Stringify torch.__version__ before serializing it. (#354)

* Run decode.py in GitHub actions. (#356)

* Ignore padding frames during RNN-T decoding. (#358)

* Ignore padding frames during RNN-T decoding.

* Fix outdated decoding code.

* Minor fixes.

* Support --iter in export.py (#360)

* GigaSpeech RNN-T experiments (#318)

* Copy RNN-T recipe from librispeech

* flake8

* flake8

* Update params

* gigaspeech decode

* black

* Update results

* syntax highlight

* Update RESULTS.md

* typo

* Update decoding script for gigaspeech and remove duplicate files. (#361)

* Validate that there are no OOV tokens in BPE-based lexicons. (#359)

* Validate that there are no OOV tokens in BPE-based lexicons.

* Typo fixes.

* Decode gigaspeech in GitHub actions (#362)

* Add CI for gigaspeech.

* Update results for libri+giga multi dataset setup. (#363)

* Update results for libri+giga multi dataset setup.

* Update GigaSpeech reults (#364)

* Update decode.py

* Update export.py

* Update results

* Update README.md

* Fix GitHub CI for decoding GigaSpeech dev/test datasets (#366)

* modify .flake8

* minor fix

* minor fix

Co-authored-by: Daniel Povey <dpovey@gmail.com>
Co-authored-by: Wei Kang <wkang@pku.org.cn>
Co-authored-by: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com>
Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
Co-authored-by: Guo Liyong <guonwpu@qq.com>
Co-authored-by: Wang, Guanbo <wgb14@outlook.com>
Co-authored-by: whsqkaak <whsqkaak@naver.com>
Co-authored-by: pehonnet <pe.honnet@gmail.com>
2022-05-15 21:08:30 +08:00

1051 lines
31 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional
import k2
import torch
from model import Transducer
from icefall.decode import Nbest, one_best_decoding
from icefall.utils import get_texts
def fast_beam_search_one_best(
model: Transducer,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
) -> List[List[int]]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using modified beam search, and then
the shortest path within the lattice is used as the final output.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
Returns:
Return the decoded result.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
)
best_path = one_best_decoding(lattice)
hyps = get_texts(best_path)
return hyps
def fast_beam_search_nbest_oracle(
model: Transducer,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
num_paths: int,
ref_texts: List[List[int]],
use_double_scores: bool = True,
nbest_scale: float = 0.5,
) -> List[List[int]]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using modified beam search, and then
we select `num_paths` linear paths from the lattice. The path
that has the minimum edit distance with the given reference transcript
is used as the output.
This is the best result we can achieve for any nbest based rescoring
methods.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
num_paths:
Number of paths to extract from the decoded lattice.
ref_texts:
A list-of-list of integers containing the reference transcripts.
If the decoding_graph is a trivial_graph, the integer ID is the
BPE token ID.
use_double_scores:
True to use double precision for computation. False to use
single precision.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
Returns:
Return the decoded result.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
hyps = nbest.build_levenshtein_graphs()
refs = k2.levenshtein_graph(ref_texts, device=hyps.device)
levenshtein_alignment = k2.levenshtein_alignment(
refs=refs,
hyps=hyps,
hyp_to_ref_map=nbest.shape.row_ids(1),
sorted_match_ref=True,
)
tot_scores = levenshtein_alignment.get_tot_scores(
use_double_scores=False, log_semiring=False
)
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
hyps = get_texts(best_path)
return hyps
def fast_beam_search(
model: Transducer,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
) -> k2.Fsa:
"""It limits the maximum number of symbols per frame to 1.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
Returns:
Return an FsaVec with axes [utt][state][arc] containing the decoded
lattice. Note: When the input graph is a TrivialGraph, the returned
lattice is actually an acceptor.
"""
assert encoder_out.ndim == 3
context_size = model.decoder.context_size
vocab_size = model.decoder.vocab_size
B, T, C = encoder_out.shape
config = k2.RnntDecodingConfig(
vocab_size=vocab_size,
decoder_history_len=context_size,
beam=beam,
max_contexts=max_contexts,
max_states=max_states,
)
individual_streams = []
for i in range(B):
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
encoder_out_len = torch.ones(1, dtype=torch.int32)
decoder_out_len = torch.ones(1, dtype=torch.int32)
for t in range(T):
# shape is a RaggedShape of shape (B, context)
# contexts is a Tensor of shape (shape.NumElements(), context_size)
shape, contexts = decoding_streams.get_contexts()
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
contexts = contexts.to(torch.int64)
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
decoder_out = model.decoder(contexts, need_pad=False)
# current_encoder_out is of shape
# (shape.NumElements(), 1, joiner_dim)
# fmt: off
current_encoder_out = torch.index_select(
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
)
# fmt: on
logits = model.joiner(
current_encoder_out,
decoder_out,
encoder_out_len.expand(decoder_out.size(0)),
decoder_out_len.expand(decoder_out.size(0)),
) # (N, vocab_size)
log_probs = logits.log_softmax(dim=-1)
decoding_streams.advance(log_probs)
decoding_streams.terminate_and_flush_to_streams()
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
return lattice
def greedy_search(
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
) -> List[int]:
"""Greedy search for a single utterance.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
max_sym_per_frame:
Maximum number of symbols per frame. If it is set to 0, the WER
would be 100%.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = model.device
decoder_input = torch.tensor(
[blank_id] * context_size, device=device, dtype=torch.int64
).reshape(1, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
T = encoder_out.size(1)
t = 0
hyp = [blank_id] * context_size
# Maximum symbols per utterance.
max_sym_per_utt = 1000
# symbols per frame
sym_per_frame = 0
# symbols per utterance decoded so far
sym_per_utt = 0
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
while t < T and sym_per_utt < max_sym_per_utt:
if sym_per_frame >= max_sym_per_frame:
sym_per_frame = 0
t += 1
continue
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
logits = model.joiner(
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
)
# logits is (1, vocab_size)
y = logits.argmax().item()
if y != blank_id:
hyp.append(y)
decoder_input = torch.tensor(
[hyp[-context_size:]], device=device
).reshape(1, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
sym_per_utt += 1
sym_per_frame += 1
else:
sym_per_frame = 0
t += 1
hyp = hyp[context_size:] # remove blanks
return hyp
def greedy_search_batch(
model: Transducer,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
) -> List[List[int]]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C), where N >= 1.
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
Returns:
Return a list-of-list of token IDs containing the decoded results.
len(ans) equals to encoder_out.size(0).
"""
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
device = next(model.parameters()).device
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
hyps = [[blank_id] * context_size for _ in range(N)]
decoder_input = torch.tensor(
hyps,
device=device,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
# decoder_out: (N, 1, decoder_out_dim)
encoder_out_len = torch.ones(1, dtype=torch.int32)
decoder_out_len = torch.ones(1, dtype=torch.int32)
encoder_out = packed_encoder_out.data
offset = 0
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1)
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.joiner(
current_encoder_out,
decoder_out,
encoder_out_len.expand(batch_size),
decoder_out_len.expand(batch_size),
) # (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
hyps[i].append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
device=device,
dtype=torch.int64,
) # (batch_size, context_size)
decoder_out = model.decoder(
decoder_input,
need_pad=False,
) # (batch_size, 1, decoder_out_dim)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
@dataclass
class Hypothesis:
# The predicted tokens so far.
# Newly predicted tokens are appended to `ys`.
ys: List[int]
# The log prob of ys.
# It contains only one entry.
log_prob: torch.Tensor
@property
def key(self) -> str:
"""Return a string representation of self.ys"""
return "_".join(map(str, self.ys))
class HypothesisList(object):
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
"""
Args:
data:
A dict of Hypotheses. Its key is its `value.key`.
"""
if data is None:
self._data = {}
else:
self._data = data
@property
def data(self) -> Dict[str, Hypothesis]:
return self._data
def add(self, hyp: Hypothesis) -> None:
"""Add a Hypothesis to `self`.
If `hyp` already exists in `self`, its probability is updated using
`log-sum-exp` with the existed one.
Args:
hyp:
The hypothesis to be added.
"""
key = hyp.key
if key in self:
old_hyp = self._data[key] # shallow copy
torch.logaddexp(
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
)
else:
self._data[key] = hyp
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
"""Get the most probable hypothesis, i.e., the one with
the largest `log_prob`.
Args:
length_norm:
If True, the `log_prob` of a hypothesis is normalized by the
number of tokens in it.
Returns:
Return the hypothesis that has the largest `log_prob`.
"""
if length_norm:
return max(
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
)
else:
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
def remove(self, hyp: Hypothesis) -> None:
"""Remove a given hypothesis.
Caution:
`self` is modified **in-place**.
Args:
hyp:
The hypothesis to be removed from `self`.
Note: It must be contained in `self`. Otherwise,
an exception is raised.
"""
key = hyp.key
assert key in self, f"{key} does not exist"
del self._data[key]
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
"""Remove all Hypotheses whose log_prob is less than threshold.
Caution:
`self` is not modified. Instead, a new HypothesisList is returned.
Returns:
Return a new HypothesisList containing all hypotheses from `self`
with `log_prob` being greater than the given `threshold`.
"""
ans = HypothesisList()
for _, hyp in self._data.items():
if hyp.log_prob > threshold:
ans.add(hyp) # shallow copy
return ans
def topk(self, k: int) -> "HypothesisList":
"""Return the top-k hypothesis."""
hyps = list(self._data.items())
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
ans = HypothesisList(dict(hyps))
return ans
def __contains__(self, key: str):
return key in self._data
def __iter__(self):
return iter(self._data.values())
def __len__(self) -> int:
return len(self._data)
def __str__(self) -> str:
s = []
for key in self:
s.append(key)
return ", ".join(s)
def run_decoder(
ys: List[int],
model: Transducer,
decoder_cache: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""Run the neural decoder model for a given hypothesis.
Args:
ys:
The current hypothesis.
model:
The transducer model.
decoder_cache:
Cache to save computations.
Returns:
Return a 1-D tensor of shape (decoder_out_dim,) containing
output of `model.decoder`.
"""
context_size = model.decoder.context_size
key = "_".join(map(str, ys[-context_size:]))
if key in decoder_cache:
return decoder_cache[key]
device = model.device
decoder_input = torch.tensor(
[ys[-context_size:]],
device=device,
dtype=torch.int64,
).reshape(1, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_cache[key] = decoder_out
return decoder_out
def run_joiner(
key: str,
model: Transducer,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
encoder_out_len: torch.Tensor,
decoder_out_len: torch.Tensor,
joint_cache: Dict[str, torch.Tensor],
):
"""Run the joint network given outputs from the encoder and decoder.
Args:
key:
A key into the `joint_cache`.
model:
The transducer model.
encoder_out:
A tensor of shape (1, 1, encoder_out_dim).
decoder_out:
A tensor of shape (1, 1, decoder_out_dim).
encoder_out_len:
A tensor with value [1].
decoder_out_len:
A tensor with value [1].
joint_cache:
A dict to save computations.
Returns:
Return a tensor from the output of log-softmax.
Its shape is (vocab_size,).
"""
if key in joint_cache:
return joint_cache[key]
logits = model.joiner(
encoder_out,
decoder_out,
encoder_out_len,
decoder_out_len,
)
# TODO(fangjun): Scale the blank posterior
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)
joint_cache[key] = log_prob
return log_prob
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
"""Return a ragged shape with axes [utt][num_hyps].
Args:
hyps:
len(hyps) == batch_size. It contains the current hypothesis for
each utterance in the batch.
Returns:
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
the shape is on CPU.
"""
num_hyps = [len(h) for h in hyps]
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
# to get exclusive sum later.
num_hyps.insert(0, 0)
num_hyps = torch.tensor(num_hyps)
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
ans = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
)
return ans
def modified_beam_search(
model: Transducer,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: int = 4,
) -> List[List[int]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcodded.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
beam:
Number of active paths during the beam search.
Returns:
Return a list-of-list of token IDs. ans[i] is the decoding results
for the i-th utterance.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
encoder_out = packed_encoder_out.data
offset = 0
finalized_B = []
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1)
# current_encoder_out's shape is: (batch_size, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = _get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
encoder_out_len.expand(decoder_out.size(0)),
decoder_out_len.expand(decoder_out.size(0)),
)
# logits is of shape (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(
shape=log_probs_shape, value=log_probs
)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
if new_token != blank_id:
new_ys.append(new_token)
new_log_prob = topk_log_probs[k]
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
B[i].add(new_hyp)
B = B + finalized_B
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
sorted_ans = [h.ys[context_size:] for h in best_hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
def _deprecated_modified_beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 4,
) -> List[int]:
"""It limits the maximum number of symbols per frame to 1.
It decodes only one utterance at a time. We keep it only for reference.
The function :func:`modified_beam_search` should be preferred as it
supports batch decoding.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = model.device
T = encoder_out.size(1)
B = HypothesisList()
B.add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
for t in range(T):
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# current_encoder_out is of shape (1, 1, encoder_out_dim)
# fmt: on
A = list(B)
B = HypothesisList()
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
# ys_log_probs is of shape (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyp in A],
device=device,
)
# decoder_input is of shape (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
current_encoder_out = current_encoder_out.expand(
decoder_out.size(0), 1, -1
)
logits = model.joiner(
current_encoder_out,
decoder_out,
encoder_out_len.expand(decoder_out.size(0)),
decoder_out_len.expand(decoder_out.size(0)),
)
# logits is of shape (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1)
log_probs.add_(ys_log_probs)
log_probs = log_probs.reshape(-1)
topk_log_probs, topk_indexes = log_probs.topk(beam)
# topk_hyp_indexes are indexes into `A`
topk_hyp_indexes = topk_indexes // logits.size(-1)
topk_token_indexes = topk_indexes % logits.size(-1)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = topk_hyp_indexes.tolist()
topk_token_indexes = topk_token_indexes.tolist()
for i in range(len(topk_hyp_indexes)):
hyp = A[topk_hyp_indexes[i]]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[i]
if new_token != blank_id:
new_ys.append(new_token)
new_log_prob = topk_log_probs[i]
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
B.add(new_hyp)
best_hyp = B.get_most_probable(length_norm=True)
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
return ys
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 4,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = model.device
decoder_input = torch.tensor(
[blank_id] * context_size, device=device
).reshape(1, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
T = encoder_out.size(1)
t = 0
B = HypothesisList()
B.add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
max_sym_per_utt = 20000
sym_per_utt = 0
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
decoder_cache: Dict[str, torch.Tensor] = {}
while t < T and sym_per_utt < max_sym_per_utt:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
A = B
B = HypothesisList()
joint_cache: Dict[str, torch.Tensor] = {}
while True:
y_star = A.get_most_probable()
A.remove(y_star)
decoder_out = run_decoder(
ys=y_star.ys, model=model, decoder_cache=decoder_cache
)
key = "_".join(map(str, y_star.ys[-context_size:]))
key += f"-t-{t}"
log_prob = run_joiner(
key=key,
model=model,
encoder_out=current_encoder_out,
decoder_out=decoder_out,
encoder_out_len=encoder_out_len,
decoder_out_len=decoder_out_len,
joint_cache=joint_cache,
)
# First, process the blank symbol
skip_log_prob = log_prob[blank_id]
new_y_star_log_prob = y_star.log_prob + skip_log_prob
# ys[:] returns a copy of ys
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
# Second, process other non-blank labels
values, indices = log_prob.topk(beam + 1)
for idx in range(values.size(0)):
i = indices[idx].item()
if i == blank_id:
continue
new_ys = y_star.ys + [i]
new_log_prob = y_star.log_prob + values[idx]
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
# Check whether B contains more than "beam" elements more probable
# than the most probable in A
A_most_probable = A.get_most_probable()
kept_B = B.filter(A_most_probable.log_prob)
if len(kept_B) >= beam:
B = kept_B.topk(beam)
break
t += 1
best_hyp = B.get_most_probable(length_norm=True)
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
return ys