mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
update Update ssl_datamodule.py Update pretrain.py Update pretrain.sh Update pretrain.sh Update hubert_ce.py Update pretrain.py
89 lines
2.6 KiB
Python
Executable File
89 lines
2.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 Xiaomi Corp. (authors: Yifan Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from collections import Counter
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from lhotse import CutSet
|
|
from tqdm import tqdm
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--cuts-path",
|
|
type=str,
|
|
default="data/kmeans/librispeech_cuts_dev-clean.jsonl.gz",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-clusters",
|
|
type=int,
|
|
default=500,
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def analyze_codebook(args):
|
|
cuts_path = Path(args.cuts_path)
|
|
assert cuts_path.is_file(), f"{cuts_path} does not exist"
|
|
|
|
logging.info(f"Loading {cuts_path}")
|
|
cut_set = CutSet.from_file(cuts_path)
|
|
|
|
cluster_counts = Counter()
|
|
logging.info("Analyzing codebook")
|
|
for cut in tqdm(cut_set):
|
|
kmeans = map(int, cut.custom["kmeans"].split())
|
|
cluster_counts.update(kmeans)
|
|
|
|
utilized_clusters = len(cluster_counts)
|
|
|
|
total_count = sum(cluster_counts.values())
|
|
counts = torch.tensor([cluster_counts[i] for i in range(args.num_clusters)])
|
|
normalized_counts = (counts / total_count).clamp(min=1e-10)
|
|
codebook_entropy = (
|
|
-(normalized_counts * normalized_counts.log()).sum()
|
|
* torch.log2(torch.tensor(torch.e))
|
|
).item()
|
|
|
|
logging.info(
|
|
f"Codebook utilization rate: {utilized_clusters / args.num_clusters:%}"
|
|
)
|
|
logging.info(f"Codebook entropy: {codebook_entropy}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
analyze_codebook(args)
|