icefall/egs/disc_tts/ASR/zipformer/asr_datamodule.py
2023-11-10 21:44:03 +08:00

171 lines
5.4 KiB
Python

import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SimpleCutSampler,
)
from lhotse.dataset.input_strategies import AudioSamples # noqa F401 For AudioSamples
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class DiscTTSAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. DiscTTS test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
sampler = SimpleCutSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
drop_last=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def test_dac_cuts(self) -> CutSet:
logging.info("About to get dac test cuts")
return load_manifest_lazy(self.args.manifest_dir / "disc_tts_cuts_dac.jsonl.gz")
@lru_cache()
def test_encodec_cuts(self) -> CutSet:
logging.info("About to get encodec test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "disc_tts_cuts_encodec.jsonl.gz"
)
@lru_cache()
def test_gt_cuts(self) -> CutSet:
logging.info("About to get gt test cuts")
return load_manifest_lazy(self.args.manifest_dir / "disc_tts_cuts_gt.jsonl.gz")
@lru_cache()
def test_hifigan_cuts(self) -> CutSet:
logging.info("About to get hifigan test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "disc_tts_cuts_hifigan.jsonl.gz"
)
@lru_cache()
def test_hubert_cuts(self) -> CutSet:
logging.info("About to get hubert test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "disc_tts_cuts_hubert.jsonl.gz"
)
@lru_cache()
def test_vq_cuts(self) -> CutSet:
logging.info("About to get vq test cuts")
return load_manifest_lazy(self.args.manifest_dir / "disc_tts_cuts_vq.jsonl.gz")
@lru_cache()
def test_wavlm_cuts(self) -> CutSet:
logging.info("About to get wavlm test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "disc_tts_cuts_wavlm.jsonl.gz"
)