mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-06 15:44:17 +00:00
171 lines
5.4 KiB
Python
171 lines
5.4 KiB
Python
import argparse
|
|
import inspect
|
|
import logging
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Optional
|
|
|
|
import torch
|
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
K2SpeechRecognitionDataset,
|
|
PrecomputedFeatures,
|
|
SimpleCutSampler,
|
|
)
|
|
from lhotse.dataset.input_strategies import AudioSamples # noqa F401 For AudioSamples
|
|
from lhotse.utils import fix_random_seed
|
|
from torch.utils.data import DataLoader
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
class _SeedWorkers:
|
|
def __init__(self, seed: int):
|
|
self.seed = seed
|
|
|
|
def __call__(self, worker_id: int):
|
|
fix_random_seed(self.seed + worker_id)
|
|
|
|
|
|
class DiscTTSAsrDataModule:
|
|
"""
|
|
DataModule for k2 ASR experiments.
|
|
It assumes there is always one train and valid dataloader,
|
|
but there can be multiple test dataloaders (e.g. DiscTTS test-clean
|
|
and test-other).
|
|
|
|
It contains all the common data pipeline modules used in ASR
|
|
experiments, e.g.:
|
|
- dynamic batch size,
|
|
- bucketing samplers,
|
|
- cut concatenation,
|
|
- augmentation,
|
|
- on-the-fly feature extraction
|
|
|
|
This class should be derived for specific corpora used in ASR tasks.
|
|
"""
|
|
|
|
def __init__(self, args: argparse.Namespace):
|
|
self.args = args
|
|
|
|
@classmethod
|
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(
|
|
title="ASR data related options",
|
|
description="These options are used for the preparation of "
|
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
"effective batch sizes, sampling strategies, applied data "
|
|
"augmentations, etc.",
|
|
)
|
|
group.add_argument(
|
|
"--manifest-dir",
|
|
type=Path,
|
|
default=Path("data/fbank"),
|
|
help="Path to directory with train/valid/test cuts.",
|
|
)
|
|
group.add_argument(
|
|
"--max-duration",
|
|
type=int,
|
|
default=200.0,
|
|
help="Maximum pooled recordings duration (seconds) in a "
|
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
)
|
|
group.add_argument(
|
|
"--shuffle",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled (=default), the examples will be "
|
|
"shuffled for each epoch.",
|
|
)
|
|
group.add_argument(
|
|
"--drop-last",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to drop last batch. Used by sampler.",
|
|
)
|
|
group.add_argument(
|
|
"--return-cuts",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, each batch will have the "
|
|
"field: batch['supervisions']['cut'] with the cuts that "
|
|
"were used to construct it.",
|
|
)
|
|
group.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=2,
|
|
help="The number of training dataloader workers that "
|
|
"collect the batches.",
|
|
)
|
|
group.add_argument(
|
|
"--input-strategy",
|
|
type=str,
|
|
default="PrecomputedFeatures",
|
|
help="AudioSamples or PrecomputedFeatures",
|
|
)
|
|
|
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
logging.debug("About to create test dataset")
|
|
test = K2SpeechRecognitionDataset(
|
|
input_strategy=eval(self.args.input_strategy)(),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
sampler = SimpleCutSampler(
|
|
cuts,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
)
|
|
logging.debug("About to create test dataloader")
|
|
test_dl = DataLoader(
|
|
test,
|
|
batch_size=None,
|
|
sampler=sampler,
|
|
num_workers=self.args.num_workers,
|
|
)
|
|
return test_dl
|
|
|
|
@lru_cache()
|
|
def test_dac_cuts(self) -> CutSet:
|
|
logging.info("About to get dac test cuts")
|
|
return load_manifest_lazy(self.args.manifest_dir / "disc_tts_cuts_dac.jsonl.gz")
|
|
|
|
@lru_cache()
|
|
def test_encodec_cuts(self) -> CutSet:
|
|
logging.info("About to get encodec test cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "disc_tts_cuts_encodec.jsonl.gz"
|
|
)
|
|
|
|
@lru_cache()
|
|
def test_gt_cuts(self) -> CutSet:
|
|
logging.info("About to get gt test cuts")
|
|
return load_manifest_lazy(self.args.manifest_dir / "disc_tts_cuts_gt.jsonl.gz")
|
|
|
|
@lru_cache()
|
|
def test_hifigan_cuts(self) -> CutSet:
|
|
logging.info("About to get hifigan test cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "disc_tts_cuts_hifigan.jsonl.gz"
|
|
)
|
|
|
|
@lru_cache()
|
|
def test_hubert_cuts(self) -> CutSet:
|
|
logging.info("About to get hubert test cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "disc_tts_cuts_hubert.jsonl.gz"
|
|
)
|
|
|
|
@lru_cache()
|
|
def test_vq_cuts(self) -> CutSet:
|
|
logging.info("About to get vq test cuts")
|
|
return load_manifest_lazy(self.args.manifest_dir / "disc_tts_cuts_vq.jsonl.gz")
|
|
|
|
@lru_cache()
|
|
def test_wavlm_cuts(self) -> CutSet:
|
|
logging.info("About to get wavlm test cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "disc_tts_cuts_wavlm.jsonl.gz"
|
|
)
|