icefall/egs/zipvoice/local/evaluate_sim.py
2025-06-16 09:45:34 +08:00

509 lines
15 KiB
Python

"""
Calculate pairwise Speaker Similarity betweeen two speech directories.
SV model wavlm_large_finetune.pth is downloaded from
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
SSL model wavlm_large.pt is downloaded from
https://huggingface.co/s3prl/converted_ckpts/resolve/main/wavlm_large.pt
"""
import argparse
import logging
import os
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
logging.basicConfig(level=logging.INFO)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--eval-path", type=str, help="path of the evaluated speech directory"
)
parser.add_argument(
"--test-list",
type=str,
help="path of the file list that contains the corresponding "
"relationship between the prompt and evaluated speech. "
"The first column is the wav name and the third column is the prompt speech",
)
parser.add_argument(
"--sv-model-path",
type=str,
default="model/UniSpeech/wavlm_large_finetune.pth",
help="path of the wavlm-based ECAPA-TDNN model",
)
parser.add_argument(
"--ssl-model-path",
type=str,
default="model/s3prl/wavlm_large.pt",
help="path of the wavlm SSL model",
)
return parser
class SpeakerSimilarity:
def __init__(
self,
sv_model_path="model/UniSpeech/wavlm_large_finetune.pth",
ssl_model_path="model/s3prl/wavlm_large.pt",
):
"""
Initialize
"""
self.sample_rate = 16000
self.channels = 1
self.device = (
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
logging.info("[Speaker Similarity] Using device: {}".format(self.device))
self.model = ECAPA_TDNN_WAVLLM(
feat_dim=1024,
channels=512,
emb_dim=256,
sr=16000,
ssl_model_path=ssl_model_path,
)
state_dict = torch.load(
sv_model_path, map_location=lambda storage, loc: storage
)
self.model.load_state_dict(state_dict["model"], strict=False)
self.model.to(self.device)
self.model.eval()
def get_embeddings(self, wav_list, dtype="float32"):
"""
Get embeddings
"""
def _load_speech_task(fname, sample_rate):
wav_data, sr = sf.read(fname, dtype=dtype)
if sr != sample_rate:
wav_data = librosa.resample(
wav_data, orig_sr=sr, target_sr=self.sample_rate
)
wav_data = torch.from_numpy(wav_data)
return wav_data
embd_lst = []
for file_path in tqdm(wav_list):
speech = _load_speech_task(file_path, self.sample_rate)
speech = speech.to(self.device)
with torch.no_grad():
embd = self.model([speech])
embd_lst.append(embd)
return embd_lst
def score(
self,
eval_path,
test_list,
dtype="float32",
):
"""
Computes the Speaker Similarity (SIM-o) between two directories of speech files.
Parameters:
- eval_path (str): Path to the directory containing evaluation speech files.
- test_list (str): Path to the file containing the corresponding relationship
between prompt and evaluated speech.
- dtype (str, optional): Data type for loading speech. Default is "float32".
Returns:
- float: The Speaker Similarity (SIM-o) score between the two directories
of speech files.
"""
prompt_wavs = []
eval_wavs = []
with open(test_list, "r") as fr:
lines = fr.readlines()
for line in lines:
wav_name, prompt_text, prompt_wav, text = line.strip().split("\t")
prompt_wavs.append(prompt_wav)
eval_wavs.append(os.path.join(eval_path, wav_name + ".wav"))
embds_prompt = self.get_embeddings(prompt_wavs, dtype=dtype)
embds_eval = self.get_embeddings(eval_wavs, dtype=dtype)
# Check if embeddings are empty
if len(embds_prompt) == 0:
logging.info("[Speaker Similarity] real set dir is empty, exiting...")
return -1
if len(embds_eval) == 0:
logging.info("[Speaker Similarity] eval set dir is empty, exiting...")
return -1
scores = []
for real_embd, eval_embd in zip(embds_prompt, embds_eval):
scores.append(
torch.nn.functional.cosine_similarity(real_embd, eval_embd, dim=-1)
.detach()
.cpu()
.numpy()
)
return np.mean(scores)
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
""" Res2Conv1d + BatchNorm1d + ReLU
"""
class Res2Conv1dReluBn(nn.Module):
"""
in_channels == out_channels == channels
"""
def __init__(
self,
channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
scale=4,
):
super().__init__()
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
self.scale = scale
self.width = channels // scale
self.nums = scale if scale == 1 else scale - 1
self.convs = []
self.bns = []
for i in range(self.nums):
self.convs.append(
nn.Conv1d(
self.width,
self.width,
kernel_size,
stride,
padding,
dilation,
bias=bias,
)
)
self.bns.append(nn.BatchNorm1d(self.width))
self.convs = nn.ModuleList(self.convs)
self.bns = nn.ModuleList(self.bns)
def forward(self, x):
out = []
spx = torch.split(x, self.width, 1)
for i in range(self.nums):
if i == 0:
sp = spx[i]
else:
sp = sp + spx[i]
# Order: conv -> relu -> bn
sp = self.convs[i](sp)
sp = self.bns[i](F.relu(sp))
out.append(sp)
if self.scale != 1:
out.append(spx[self.nums])
out = torch.cat(out, dim=1)
return out
""" Conv1d + BatchNorm1d + ReLU
"""
class Conv1dReluBn(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
)
self.bn = nn.BatchNorm1d(out_channels)
def forward(self, x):
return self.bn(F.relu(self.conv(x)))
""" The SE connection of 1D case.
"""
class SE_Connect(nn.Module):
def __init__(self, channels, se_bottleneck_dim=128):
super().__init__()
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
def forward(self, x):
out = x.mean(dim=2)
out = F.relu(self.linear1(out))
out = torch.sigmoid(self.linear2(out))
out = x * out.unsqueeze(2)
return out
""" SE-Res2Block of the ECAPA-TDNN architecture.
"""
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
# return nn.Sequential(
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
# SE_Connect(channels)
# )
class SE_Res2Block(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
scale,
se_bottleneck_dim,
):
super().__init__()
self.Conv1dReluBn1 = Conv1dReluBn(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.Res2Conv1dReluBn = Res2Conv1dReluBn(
out_channels, kernel_size, stride, padding, dilation, scale=scale
)
self.Conv1dReluBn2 = Conv1dReluBn(
out_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
self.shortcut = None
if in_channels != out_channels:
self.shortcut = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
def forward(self, x):
residual = x
if self.shortcut:
residual = self.shortcut(x)
x = self.Conv1dReluBn1(x)
x = self.Res2Conv1dReluBn(x)
x = self.Conv1dReluBn2(x)
x = self.SE_Connect(x)
return x + residual
""" Attentive weighted mean and standard deviation pooling.
"""
class AttentiveStatsPool(nn.Module):
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
super().__init__()
self.global_context_att = global_context_att
# Use Conv1d with stride == 1 rather than Linear,
# then we don't need to transpose inputs.
if global_context_att:
self.linear1 = nn.Conv1d(
in_dim * 3, attention_channels, kernel_size=1
) # equals W and b in the paper
else:
self.linear1 = nn.Conv1d(
in_dim, attention_channels, kernel_size=1
) # equals W and b in the paper
self.linear2 = nn.Conv1d(
attention_channels, in_dim, kernel_size=1
) # equals V and k in the paper
def forward(self, x):
if self.global_context_att:
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
context_std = torch.sqrt(
torch.var(x, dim=-1, keepdim=True) + 1e-10
).expand_as(x)
x_in = torch.cat((x, context_mean, context_std), dim=1)
else:
x_in = x
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
alpha = torch.tanh(self.linear1(x_in))
# alpha = F.relu(self.linear1(x_in))
alpha = torch.softmax(self.linear2(alpha), dim=2)
mean = torch.sum(alpha * x, dim=2)
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
std = torch.sqrt(residuals.clamp(min=1e-9))
return torch.cat([mean, std], dim=1)
class ECAPA_TDNN_WAVLLM(nn.Module):
def __init__(
self,
feat_dim=80,
channels=512,
emb_dim=192,
global_context_att=False,
sr=16000,
ssl_model_path=None,
):
super().__init__()
self.sr = sr
if ssl_model_path is None:
self.feature_extract = torch.hub.load("s3prl/s3prl", "wavlm_large")
else:
self.feature_extract = torch.hub.load(
os.path.dirname(ssl_model_path),
"wavlm_local",
source="local",
ckpt=ssl_model_path,
)
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"
):
self.feature_extract.model.encoder.layers[
23
].self_attn.fp32_attention = False
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"
):
self.feature_extract.model.encoder.layers[
11
].self_attn.fp32_attention = False
self.feat_num = self.get_feat_num()
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
self.instance_norm = nn.InstanceNorm1d(feat_dim)
# self.channels = [channels] * 4 + [channels * 3]
self.channels = [channels] * 4 + [1536]
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
self.layer2 = SE_Res2Block(
self.channels[0],
self.channels[1],
kernel_size=3,
stride=1,
padding=2,
dilation=2,
scale=8,
se_bottleneck_dim=128,
)
self.layer3 = SE_Res2Block(
self.channels[1],
self.channels[2],
kernel_size=3,
stride=1,
padding=3,
dilation=3,
scale=8,
se_bottleneck_dim=128,
)
self.layer4 = SE_Res2Block(
self.channels[2],
self.channels[3],
kernel_size=3,
stride=1,
padding=4,
dilation=4,
scale=8,
se_bottleneck_dim=128,
)
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
cat_channels = channels * 3
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
self.pooling = AttentiveStatsPool(
self.channels[-1],
attention_channels=128,
global_context_att=global_context_att,
)
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
def get_feat_num(self):
self.feature_extract.eval()
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
with torch.no_grad():
features = self.feature_extract(wav)
select_feature = features["hidden_states"]
if isinstance(select_feature, (list, tuple)):
return len(select_feature)
else:
return 1
def get_feat(self, x):
with torch.no_grad():
x = self.feature_extract([sample for sample in x])
x = x["hidden_states"]
if isinstance(x, (list, tuple)):
x = torch.stack(x, dim=0)
else:
x = x.unsqueeze(0)
norm_weights = (
F.softmax(self.feature_weight, dim=-1)
.unsqueeze(-1)
.unsqueeze(-1)
.unsqueeze(-1)
)
x = (norm_weights * x).sum(dim=0)
x = torch.transpose(x, 1, 2) + 1e-6
x = self.instance_norm(x)
return x
def forward(self, x):
x = self.get_feat(x)
out1 = self.layer1(x)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
out = torch.cat([out2, out3, out4], dim=1)
out = F.relu(self.conv(out))
out = self.bn(self.pooling(out))
out = self.linear(out)
return out
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
SIM = SpeakerSimilarity(
sv_model_path=args.sv_model_path, ssl_model_path=args.ssl_model_path
)
score = SIM.score(args.eval_path, args.test_list)
logging.info(f"SIM-o score: {score:.3f}")