icefall/egs/librilight/SSL/zipformer/ssl_datamodule.py
2024-09-08 13:28:13 +08:00

340 lines
11 KiB
Python

# Copyright 2024 Xiaomi Corporation (Author: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import logging
import re
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import lhotse
import torch
from dataset import HubertDataset
from lhotse import CutSet, load_manifest_lazy
from lhotse.dataset import DynamicBucketingSampler, SimpleCutSampler
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class LibriLightDataModule:
"""
DataModule for SSL experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriLight test-clean
and test-other).
It contains all the common data pipeline modules used in SSL
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
This class should be derived for specific corpora used in SSL tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="SSL data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/kmeans"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=float,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=1000,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--num-cuts-for-bins-estimate",
type=float,
default=1000000,
help="We will draw this many cuts to estimate the duration"
"bins for creating similar-duration buckets. Larger number"
"means a better estimate to the data distribution, possibly"
"at a longer init cost.",
)
group.add_argument(
"--quadratic-duration",
type=float,
default=None,
help="When set, it adds an extra penalty that's quadratic"
"in size w.r.t. a cuts duration. This helps get a more"
"even GPU utilization across different input lengths when"
"models have quadratic input complexity. Set between 15"
"and 40 for transformers.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--num-workers",
type=int,
default=8,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--do-normalize",
type=str2bool,
default=True,
help="whether to normalize the data",
)
group.add_argument(
"--random-crop",
type=str2bool,
default=True,
help="always crop from the beginning if false",
)
def train_dataloaders(
self,
cuts_train: CutSet,
max_sample_size: Optional[int] = None,
sample_rate: float = 16000,
label_rate: float = 50,
random_crop: bool = True,
pad_audio: bool = False,
num_classes: list = [504],
do_normalize: bool = True,
sampler_state_dict: Optional[Dict[str, Any]] = None,
world_size: Optional[int] = None,
rank: Optional[int] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
logging.info("About to create train dataset")
train = HubertDataset(
max_sample_size=max_sample_size,
sample_rate=sample_rate,
label_rate=label_rate,
random_crop=random_crop,
pad_audio=pad_audio,
num_classes=num_classes,
do_normalize=do_normalize,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
quadratic_duration=self.args.quadratic_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
buffer_size=self.args.num_buckets * 2000,
num_cuts_for_bins_estimate=self.args.num_cuts_for_bins_estimate,
drop_last=self.args.drop_last,
world_size=world_size,
rank=rank,
)
else:
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
world_size=world_size,
rank=rank,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(
self,
cuts_valid: CutSet,
max_sample_size: Optional[int] = None,
sample_rate: float = 16000,
label_rate: float = 50,
random_crop: bool = True,
pad_audio: bool = False,
num_classes: list = [504],
do_normalize: bool = True,
world_size: Optional[int] = None,
rank: Optional[int] = None,
) -> DataLoader:
logging.info("About to create dev dataset")
validate = HubertDataset(
max_sample_size=max_sample_size,
sample_rate=sample_rate,
label_rate=label_rate,
random_crop=random_crop,
pad_audio=pad_audio,
num_classes=num_classes,
do_normalize=do_normalize,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
quadratic_duration=self.args.quadratic_duration,
shuffle=False,
world_size=world_size,
rank=rank,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
@lru_cache()
def all_shuf_cuts(self) -> CutSet:
logging.info(
"About to get the shuffled librilight small, medium and large cuts"
)
small_cuts = self.small_cuts()
medium_cuts = self.medium_cuts()
large_cuts = self.large_cuts()
return CutSet.mux(
small_cuts,
medium_cuts,
large_cuts,
weights=[
229051, # len(small_cuts)
2022949, # len(medium_cuts)
19883414, # len(large_cuts)
],
)
@lru_cache()
def dev_clean_cuts(self) -> CutSet:
logging.info("About to get librispeech dev-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
)
@lru_cache()
def small_cuts(self) -> CutSet:
logging.info("About to get librilight small cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librilight_cuts_small.jsonl.gz"
)
@lru_cache()
def medium_cuts(self) -> CutSet:
logging.info("About to get librilight medium cuts")
filenames = glob.glob(
str(
self.args.manifest_dir
/ "medium_split"
/ "librilight_cuts_medium.*.jsonl.gz"
)
)
pattern = re.compile(r"librilight_cuts_medium.([0-9]+).jsonl.gz")
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
sorted_filenames = [f[1] for f in idx_filenames]
logging.info(
f"Loading Libri-Light medium {len(sorted_filenames)} splits in lazy mode"
)
return lhotse.combine(lhotse.load_manifest_lazy(p) for p in sorted_filenames)
@lru_cache()
def large_cuts(self) -> CutSet:
logging.info("About to get librilight large cuts")
filenames = glob.glob(
str(
self.args.manifest_dir
/ "large_split"
/ "librilight_cuts_large.*.jsonl.gz"
)
)
pattern = re.compile(r"librilight_cuts_large.([0-9]+).jsonl.gz")
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
sorted_filenames = [f[1] for f in idx_filenames]
logging.info(
f"Loading Libri-Light large {len(sorted_filenames)} splits in lazy mode"
)
return lhotse.combine(lhotse.load_manifest_lazy(p) for p in sorted_filenames)