mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
188 lines
7.6 KiB
Python
188 lines
7.6 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch import Tensor
|
|
from typing import Tuple
|
|
|
|
|
|
class JointCodebookPredictor(nn.Module):
|
|
"""
|
|
This module predicts a group of codebook indexes from a vector. The idea is that
|
|
you have a number of codebooks (probably jointly trained), from class Quantizer,
|
|
and you want to predict the probabilities of the codebook entries based on some
|
|
predictor that you are training.
|
|
The simplest thing would be to project the vector using nn.Linear, then
|
|
reshape and use logsoftmax to normalize the probabilities within each group,
|
|
then compute the likelihood. However, this has a constraint that all the
|
|
codebooks are predicted independently of each other. This module allows you
|
|
to predict them jointly, by regressing each codebook on all previous codebooks.
|
|
This is done with a nonlinearity in which the previous codebook entries are combined
|
|
with the input predictor vector, so that the regression is not purely
|
|
linear.
|
|
Args:
|
|
predictor_dim: the number of features that we use to predict the codebook
|
|
indexes, e.g. 2048 (will depend on your model).
|
|
num_codebooks: the number of codebooks that you are predicting;
|
|
will likely be the same as the bytes_per_frame given to the
|
|
QuantizerTrainer that you used to train the Quantizer you
|
|
are predicting.
|
|
codebook_size: number of entries per codebook (often 256)
|
|
self_prediction: you can set this to false to enable prediction of
|
|
codebooks by earlier-numbered codebooks
|
|
hidden_dim: the hidden dimension per codebook (we use a 1-hidden-layer
|
|
network, with a ReLU and then batchnorm).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
predictor_dim: int,
|
|
num_codebooks: int,
|
|
codebook_size: int = 256,
|
|
self_prediction: bool = True,
|
|
hidden_dim: int = 384,
|
|
):
|
|
super(JointCodebookPredictor, self).__init__()
|
|
|
|
self.num_codebooks = num_codebooks
|
|
self.codebook_size = codebook_size
|
|
self.hidden_dim = hidden_dim
|
|
|
|
self.linear1 = nn.Linear(predictor_dim, num_codebooks * hidden_dim)
|
|
|
|
if self_prediction:
|
|
linear_self_out_dim = (num_codebooks - 1) * hidden_dim
|
|
linear_self_in_dim = (num_codebooks - 1) * codebook_size
|
|
self.linear_self = nn.Parameter(
|
|
torch.randn(linear_self_out_dim, linear_self_in_dim)
|
|
* (linear_self_in_dim ** -0.5)
|
|
)
|
|
|
|
# num_codebooks == 3 and hidden_dim == 2 and codebook_size == 2,
|
|
# the expression below has the value:
|
|
# tensor([[ True, True, False, False],
|
|
# [ True, True, False, False],
|
|
# [ True, True, True, True],
|
|
# [ True, True, True, True]])
|
|
self.register_buffer(
|
|
"linear_self_mask",
|
|
(
|
|
(torch.arange(linear_self_out_dim) // hidden_dim).unsqueeze(
|
|
1
|
|
)
|
|
>= (
|
|
torch.arange(linear_self_in_dim) // codebook_size
|
|
).unsqueeze(0)
|
|
),
|
|
)
|
|
else:
|
|
self.register_parameter("linear_self", None)
|
|
self.register_buffer("linear_self_mask", None)
|
|
|
|
self.norm = nn.BatchNorm1d(num_codebooks * hidden_dim)
|
|
self.linear2 = nn.Parameter(
|
|
torch.randn(num_codebooks, codebook_size, hidden_dim)
|
|
* (hidden_dim ** -0.5)
|
|
)
|
|
self.bias2 = nn.Parameter(torch.zeros(num_codebooks, codebook_size))
|
|
|
|
def forward(
|
|
self, predictor: Tensor, codebook_indexes: Tensor
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Forward function.
|
|
Args:
|
|
predictor: a Tensor of some real type, with shape (*, predictor_dim).
|
|
codebook_indexes: a Tensor of integers, of shape (*, num_codebooks),
|
|
where the '*' should be the same as for `predictor`. It will be
|
|
converted to type torch.int64. Should contain indexes of codebook
|
|
entries, in {0..codebook_size-1},
|
|
or negative values which will be interpreted as "no codebook index here"
|
|
(e.g. due to padding); we assume that each frame will either have
|
|
all-negative or all-nonnegative indexes, meaning that (codebook_indexes >= 0)
|
|
should not vary as you change the last index into it.
|
|
Returns: total_logprob, total_count, where:
|
|
total_logprob: a scalar Tensor, containing the total log-probability of all
|
|
the nonnegative codebook indexes,
|
|
total_count: a scalar Tensor containing the total count of nonzero frames,
|
|
satisfying total_count <= codebook_indexes.numel() / num_groups
|
|
"""
|
|
codebook_indexes = codebook_indexes.to(torch.int64)
|
|
# import pdb; pdb.set_trace()
|
|
assert list(predictor.shape[:-1]) == list(codebook_indexes.shape[:-1])
|
|
assert codebook_indexes.shape[-1] == self.num_codebooks
|
|
|
|
tot_codebook_dim = self.num_codebooks * self.codebook_size
|
|
|
|
common_shape = list(predictor.shape[:-1])
|
|
codebook_one_hot = torch.zeros(
|
|
*common_shape,
|
|
self.num_codebooks,
|
|
self.codebook_size,
|
|
device=predictor.device
|
|
)
|
|
|
|
codebook_mask = (codebook_indexes >= 0).unsqueeze(
|
|
-1
|
|
) # (*, num_codebooks, 1)
|
|
codebook_indexes_floor = torch.clamp(codebook_indexes, min=0).unsqueeze(
|
|
-1
|
|
) # (*, num_codebooks, 1)
|
|
codebook_one_hot.scatter_(
|
|
dim=-1,
|
|
index=codebook_indexes_floor,
|
|
src=codebook_mask.to(torch.float32),
|
|
)
|
|
codebook_one_hot = codebook_one_hot.reshape(
|
|
*common_shape, tot_codebook_dim
|
|
) # (*, tot_codebook_dim)
|
|
|
|
hidden = self.linear1(predictor)
|
|
if self.linear_self is not None:
|
|
codebook_one_hot_part = torch.narrow(
|
|
codebook_one_hot, -1, 0, tot_codebook_dim - self.codebook_size
|
|
)
|
|
self_predictor = torch.matmul(
|
|
codebook_one_hot_part,
|
|
(self.linear_self * self.linear_self_mask).transpose(0, 1),
|
|
)
|
|
|
|
# add the 'self_predictor' term to all but the 1st
|
|
# block of "hidden".
|
|
hidden_part = torch.narrow(
|
|
hidden,
|
|
-1,
|
|
self.hidden_dim,
|
|
self.hidden_dim * (self.num_codebooks - 1),
|
|
)
|
|
|
|
hidden_part += self_predictor
|
|
|
|
hidden = nn.functional.relu(hidden)
|
|
hidden = hidden.reshape(-1, self.hidden_dim * self.num_codebooks)
|
|
hidden = self.norm(hidden)
|
|
hidden = hidden.reshape(
|
|
*common_shape, self.num_codebooks, self.hidden_dim
|
|
) # (*, num_codebooks, hidden_dim)
|
|
|
|
logprobs = (
|
|
torch.matmul(
|
|
hidden.unsqueeze(-2), self.linear2.transpose(1, 2)
|
|
).squeeze(-2)
|
|
+ self.bias2
|
|
)
|
|
|
|
# logprobs: (*, num_codebooks, codebook_size)
|
|
logprobs = logprobs.log_softmax(dim=-1)
|
|
logprobs = logprobs.reshape(
|
|
*common_shape, self.num_codebooks * self.codebook_size
|
|
)
|
|
|
|
tot_logprob = torch.dot(
|
|
logprobs.reshape(-1), codebook_one_hot.reshape(-1)
|
|
)
|
|
assert tot_logprob <= 0.0
|
|
# the select() part is to select only the mask for one of the codebooks (they should
|
|
# all be the same), as we want the total number of frames.
|
|
tot_count = codebook_mask.select(dim=-2, index=0).sum()
|
|
|
|
return (tot_logprob, tot_count)
|