mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
214 lines
9.1 KiB
Bash
214 lines
9.1 KiB
Bash
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
export PYTHONPATH=$PYTHONPATH:/workspace/icefall
|
|
|
|
set -eou pipefail
|
|
|
|
stage=$1
|
|
stop_stage=$2
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "stage 0: Clone CosyVoice repo and install requirements inside the container"
|
|
# docker: ghcr.io/swivid/f5-tts:main
|
|
pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html
|
|
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git /workspace/CosyVoice
|
|
cd /workspace/CosyVoice
|
|
# If you failed to clone submodule due to network failures, please run following command until success
|
|
git submodule update --init --recursive
|
|
pip install -r qwen_omni/requirements.txt
|
|
pip install -r qwen_omni/requirements-cosyvoice.txt
|
|
|
|
# For Chinese only dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
|
# Cosyvoice pretrained model for speech token2wav module
|
|
huggingface-cli download --local-dir models/CosyVoice-300M-SFT FunAudioLLM/CosyVoice-300M-SFT
|
|
# Qwen Pretrained model
|
|
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
|
# Qwen-Omni like speech2speech model trained on worstchan/Belle_1.4M-SLAM-Omni
|
|
huggingface-cli download --local-dir models/qwen-omni-like-speech2speech-belle-1.4M yuekai/qwen-omni-like-speech2speech-belle-1.4M
|
|
|
|
# For Gradio demo, we follow https://arxiv.org/abs/2412.15649 to use ASR model to decode the history speech as context.
|
|
pip install sherpa-onnx
|
|
model_path=local/sherpa-onnx-paraformer-zh-2023-09-14
|
|
if [ ! -d $model_path ]; then
|
|
wget -nc https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
|
|
tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2 -C local
|
|
fi
|
|
fi
|
|
export PYTHONPATH=$PYTHONPATH:/workspace/CosyVoice
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "stage 1: Compute fbank feature from huggingface"
|
|
python3 local/compute_whisper_fbank.py \
|
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
--out-dir data/fbank_test \
|
|
--huggingface-dataset-path-or-name /workspace/Belle_1.4M-SLAM-Omni \
|
|
--audio-key question_audio --text-key answer \
|
|
--prefix belle
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Combine features"
|
|
manifest_dir=data/fbank
|
|
if [ ! -f $manifest_dir/cuts_belle_00001-01600.jsonl.gz ]; then
|
|
mv $manifest_dir/cuts_belle.00000.jsonl.gz ./
|
|
# exclude cust_belle_00000.jsonl.gz for valid and test set
|
|
pieces=$(find $manifest_dir -name "cuts_belle.*.jsonl.gz" | sort)
|
|
echo $pieces | wc
|
|
lhotse combine $pieces data/fbank/cuts_belle_00001-01600.jsonl.gz
|
|
mv ./cuts_belle.00000.jsonl.gz $manifest_dir # put it back
|
|
cd $manifest_dir && ln -s cuts_belle_00001-01600.jsonl.gz cuts_belle_train.jsonl.gz
|
|
ln -s cuts_belle.00000.jsonl.gz cuts_belle_test.jsonl.gz && cd -
|
|
fi
|
|
fi
|
|
|
|
ngpu=8
|
|
exp_dir=./qwen_omni/exp_speech2speech
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "stage 3: Training Speech2Speech Model"
|
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
--max-duration 50 \
|
|
--enable-musan False \
|
|
--exp-dir $exp_dir \
|
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
--manifest-dir data/fbank \
|
|
--deepspeed \
|
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
--use-flash-attn True \
|
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "stage 4: Decoding, only support batch_size=1 for now."
|
|
cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd -
|
|
python3 ./qwen_omni/decode.py \
|
|
--max-duration 1 \
|
|
--exp-dir $exp_dir \
|
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
|
--epoch 999 --avg 1 \
|
|
--manifest-dir data/fbank \
|
|
--use-flash-attn True \
|
|
--method e2e-epoch10_speech2speech \
|
|
--enable-speech-output True \
|
|
--token2wav-path models/CosyVoice-300M-SFT \
|
|
--use-lora True
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "stage 5: Gradio Demo"
|
|
python3 ./qwen_omni/web_demo.py \
|
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
|
--checkpoint-path $exp_dir/epoch-999.pt \
|
|
--use-flash-attn True \
|
|
--enable-speech-output True \
|
|
--asr-model-dir local/sherpa-onnx-paraformer-zh-2023-09-14 \
|
|
--use-lora True --token2wav-path /workspace/CosyVoice-300M-SFT --share
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "stage 1: Compute fbank feature from huggingface"
|
|
# CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
|
# --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
# --out-dir data/fbank_voice_assistant \
|
|
# --huggingface-dataset-path-or-name worstchan/VoiceAssistant-400K-SLAM-Omni \
|
|
# --audio-key question_audio --text-key answer \
|
|
# --prefix voice_assistant
|
|
CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
--out-dir data/fbank_voice_assistant_cosy2 \
|
|
--json-file-path /workspace/slam/VoiceAssistant-430K-vocalnet/VoiceAssistant-430K.json \
|
|
--prefix voice_assistant
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "stage 7: Compute fbank feature from huggingface"
|
|
# CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
|
# --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
# --out-dir data/fbank_ultrachat \
|
|
# --huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \
|
|
# --audio-key question_audio --text-key answer \
|
|
# --prefix ultrachat
|
|
CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
--out-dir data/fbank_ultrachat_cosy2 \
|
|
--json-file-path /workspace/slam/UltraChat-vocalnet/UltraChat.json \
|
|
--prefix ultrachat
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "stage 8: Compute fbank feature from huggingface"
|
|
|
|
CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
--out-dir data/fbank_gigaspeech \
|
|
--huggingface-dataset-path-or-name speechcolab/gigaspeech \
|
|
--subset test --split test \
|
|
--audio-key audio --text-key text \
|
|
--prefix gigaspeech
|
|
fi
|
|
|
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
log "stage 9: Compute fbank feature from huggingface"
|
|
CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb True \
|
|
--out-dir data/fbank_gigaspeech \
|
|
--huggingface-dataset-path-or-name speechcolab/gigaspeech \
|
|
--subset xl --split train \
|
|
--audio-key audio --text-key text \
|
|
--prefix gigaspeech
|
|
fi
|
|
|
|
# cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -
|
|
ngpu=4
|
|
exp_dir=./qwen_omni/exp_speech2speech_en
|
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
log "stage 10: Training Speech2Speech Model"
|
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
--max-duration 150 \
|
|
--enable-musan False \
|
|
--exp-dir $exp_dir \
|
|
--speech-encoder-path-or-name models/large-v2.pt \
|
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
--dataset-format vocalnet \
|
|
--manifest-dir data/fbank \
|
|
--deepspeed \
|
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
--use-flash-attn True --on-the-fly-feats True \
|
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
fi
|
|
|
|
|
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
|
log "stage 11: Decoding EN, only support batch_size=1 for now."
|
|
exp_dir=./qwen_omni/exp_speech2speech_en_continue
|
|
# cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd -
|
|
python3 ./qwen_omni/decode.py \
|
|
--max-duration 1 \
|
|
--exp-dir $exp_dir \
|
|
--speech-encoder-path-or-name models/large-v2.pt \
|
|
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
|
--epoch 997 --avg 1 \
|
|
--manifest-dir data/fbank \
|
|
--use-flash-attn True \
|
|
--method e2e-epoch4_speech2speech \
|
|
--enable-speech-output True \
|
|
--token2wav-path /workspace/CosyVoice2-0.5B \
|
|
--use-lora True
|
|
fi
|