mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
178 lines
5.1 KiB
Python
178 lines
5.1 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This file generates the manifest and computes the fbank features for AudioSet
|
|
dataset. The generated manifests and features are stored in data/fbank.
|
|
"""
|
|
|
|
import argparse
|
|
import csv
|
|
import glob
|
|
import logging
|
|
import os
|
|
from typing import Dict
|
|
|
|
import torch
|
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
|
from lhotse.audio import Recording
|
|
from lhotse.cut import MonoCut
|
|
from lhotse.supervision import SupervisionSegment
|
|
|
|
from icefall.utils import get_executor
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_ID_mapping(csv_file):
|
|
# get a mapping between class ID and class name
|
|
mapping = {}
|
|
with open(csv_file, "r") as fin:
|
|
reader = csv.reader(fin, delimiter=",")
|
|
for i, row in enumerate(reader):
|
|
if i == 0:
|
|
continue
|
|
mapping[row[1]] = row[0]
|
|
return mapping
|
|
|
|
|
|
def parse_csv(csv_file: str, id_mapping: Dict):
|
|
# The content of the csv file shoud be something like this
|
|
# ------------------------------------------------------
|
|
# filename label
|
|
# dataset/AudioSet/balanced/xxxx.wav 0;451
|
|
# dataset/AudioSet/balanced/xxxy.wav 375
|
|
# ------------------------------------------------------
|
|
|
|
def name2id(names):
|
|
ids = [id_mapping[name] for name in names.split(",")]
|
|
return ";".join(ids)
|
|
|
|
mapping = {}
|
|
with open(csv_file, "r") as fin:
|
|
reader = csv.reader(fin, delimiter=" ")
|
|
for i, row in enumerate(reader):
|
|
if i <= 2:
|
|
continue
|
|
key = row[0].replace(",", "")
|
|
mapping[key] = name2id(row[-1])
|
|
return mapping
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument("--dataset-dir", type=str, default="downloads/audioset")
|
|
|
|
parser.add_argument(
|
|
"--split",
|
|
type=str,
|
|
default="balanced",
|
|
choices=["balanced", "unbalanced", "eval"],
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--feat-output-dir",
|
|
type=str,
|
|
default="data/fbank",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
dataset_dir = args.dataset_dir
|
|
split = args.split
|
|
feat_output_dir = args.feat_output_dir
|
|
|
|
num_jobs = min(15, os.cpu_count())
|
|
num_mel_bins = 80
|
|
|
|
if split in ["balanced", "unbalanced"]:
|
|
csv_file = f"{dataset_dir}/{split}_train_segments.csv"
|
|
elif split == "eval":
|
|
csv_file = f"{dataset_dir}/eval_segments.csv"
|
|
else:
|
|
raise ValueError()
|
|
|
|
class_indices_csv = f"{dataset_dir}/class_labels_indices.csv"
|
|
id_mapping = get_ID_mapping(class_indices_csv)
|
|
labels = parse_csv(csv_file, id_mapping)
|
|
|
|
audio_files = glob.glob(f"{dataset_dir}/{split}/*.wav")
|
|
|
|
new_cuts = []
|
|
for i, audio in enumerate(audio_files):
|
|
cut_id = audio.split("/")[-1].split("_")[0]
|
|
recording = Recording.from_file(audio, cut_id)
|
|
cut = MonoCut(
|
|
id=cut_id,
|
|
start=0.0,
|
|
duration=recording.duration,
|
|
channel=0,
|
|
recording=recording,
|
|
)
|
|
supervision = SupervisionSegment(
|
|
id=cut_id,
|
|
recording_id=cut.recording.id,
|
|
start=0.0,
|
|
channel=0,
|
|
duration=cut.duration,
|
|
)
|
|
try:
|
|
supervision.audio_event = labels[cut_id]
|
|
except KeyError:
|
|
logging.info(f"No labels found for {cut_id}.")
|
|
continue
|
|
cut.supervisions = [supervision]
|
|
new_cuts.append(cut)
|
|
|
|
if i % 100 == 0 and i:
|
|
logging.info(f"Processed {i} cuts until now.")
|
|
|
|
cuts = CutSet.from_cuts(new_cuts)
|
|
|
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
|
|
logging.info(f"Computing fbank features for {split}")
|
|
with get_executor() as ex:
|
|
cuts = cuts.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{feat_output_dir}/{split}_feats",
|
|
num_jobs=num_jobs if ex is None else 80,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
|
|
manifest_output_dir = feat_output_dir + "/" + f"cuts_audioset_{split}.jsonl.gz"
|
|
|
|
logging.info(f"Storing the manifest to {manifest_output_dir}")
|
|
cuts.to_jsonl(manifest_output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|