mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 17:42:21 +00:00
* Bug fix * Change subsamplling factor from 1 to 2 * Implement AttentionCombine as replacement for RandomCombine * Decrease random_prob from 0.5 to 0.333 * Add print statement * Apply single_prob mask, so sometimes we just get one layer as output. * Introduce feature mask per frame * Include changes from Liyong about padding conformer module. * Reduce single_prob from 0.5 to 0.25 * Reduce feature_mask_dropout_prob from 0.25 to 0.15. * Remove dropout from inside ConformerEncoderLayer, for adding to residuals * Increase feature_mask_dropout_prob from 0.15 to 0.2. * Swap random_prob and single_prob, to reduce prob of being randomized. * Decrease feature_mask_dropout_prob back from 0.2 to 0.15, i.e. revert the 43->48 change. * Randomize order of some modules * Bug fix * Stop backprop bug * Introduce a scale dependent on the masking value * Implement efficient layer dropout * Simplify the learned scaling factor on the modules * Compute valid loss on batch 0. * Make the scaling factors more global and the randomness of dropout more random * Bug fix * Introduce offset in layerdrop_scaleS * Remove final combination; implement layer drop that drops the final layers. * Bug fices * Fix bug RE self.training * Fix bug setting layerdrop mask * Fix eigs call * Add debug info * Remove warmup * Remove layer dropout and model-level warmup * Don't always apply the frame mask * Slight code cleanup/simplification * Various fixes, finish implementating frame masking * Remove debug info * Don't compute validation if printing diagnostics. * Apply layer bypass during warmup in a new way, including 2s and 4s of layers. * Update checkpoint.py to deal with int params * Revert initial_scale to previous values. * Remove the feature where it was bypassing groups of layers. * Implement layer dropout with probability 0.075 * Fix issue with warmup in test time * Add warmup schedule where dropout disappears from earlier layers first. * Have warmup that gradually removes dropout from layers; multiply initialization scales by 0.1. * Do dropout a different way * Fix bug in warmup * Remove debug print * Make the warmup mask per frame. * Implement layer dropout (in a relatively efficient way) * Decrease initial keep_prob to 0.25. * Make it start warming up from the very start, and increase warmup_batches to 6k * Change warmup schedule and increase warmup_batches from 4k to 6k * Make the bypass scale trainable. * Change the initial keep-prob back from 0.25 to 0.5 * Bug fix * Limit bypass scale to >= 0.1 * Revert "Change warmup schedule and increase warmup_batches from 4k to 6k" This reverts commit 86845bd5d859ceb6f83cd83f3719c3e6641de987. * Do warmup by dropping out whole layers. * Decrease frequency of logging variance_proportion * Make layerdrop different in different processes. * For speed, drop the same num layers per job. * Decrease initial_layerdrop_prob from 0.75 to 0.5 * Revert also the changes in scaled_adam_exp85 regarding warmup schedule * Remove unused code LearnedScale. * Reintroduce batching to the optimizer * Various fixes from debugging with nvtx, but removed the NVTX annotations. * Only apply ActivationBalancer with prob 0.25. * Fix s -> scaling for import. * Increase final layerdrop prob from 0.05 to 0.075 * Fix bug where fewer layers were dropped than should be; remove unnecesary print statement. * Fix bug in choosing layers to drop * Refactor RelPosMultiheadAttention to have 2nd forward function and introduce more modules in conformer encoder layer * Reduce final layerdrop_prob from 0.075 to 0.05. * Fix issue with diagnostics if stats is None * Remove persistent attention scores. * Make ActivationBalancer and MaxEig more efficient. * Cosmetic improvements * Change scale_factor_scale from 0.5 to 0.8 * Make the ActivationBalancer regress to the data mean, not zero, when enforcing abs constraint. * Remove unused config value * Fix bug when channel_dim < 0 * Fix bug when channel_dim < 0 * Simplify how the positional-embedding scores work in attention (thanks to Zengwei for this concept) * Revert dropout on attention scores to 0.0. * This should just be a cosmetic change, regularizing how we get the warmup times from the layers. * Reduce beta from 0.75 to 0.0. * Reduce stats period from 10 to 4. * Reworking of ActivationBalancer code to hopefully balance speed and effectiveness. * Add debug code for attention weihts and eigs * Remove debug statement * Add different debug info. * Penalize attention-weight entropies above a limit. * Remove debug statements * use larger delta but only penalize if small grad norm * Bug fixes; change debug freq * Change cutoff for small_grad_norm * Implement whitening of values in conformer. * Also whiten the keys in conformer. * Fix an issue with scaling of grad. * Decrease whitening limit from 2.0 to 1.1. * Fix debug stats. * Reorganize Whiten() code; configs are not the same as before. Also remove MaxEig for self_attn module * Bug fix RE float16 * Revert whitening_limit from 1.1 to 2.2. * Replace MaxEig with Whiten with limit=5.0, and move it to end of ConformerEncoderLayer * Change LR schedule to start off higher * Simplify the dropout mask, no non-dropped-out sequences * Make attention dims configurable, not embed_dim//2, trying 256. * Reduce attention_dim to 192; cherry-pick scaled_adam_exp130 which is linear_pos interacting with query * Use half the dim for values, vs. keys and queries. * Increase initial-lr from 0.04 to 0.05, plus changes for diagnostics * Cosmetic changes * Changes to avoid bug in backward hooks, affecting diagnostics. * Random clip attention scores to -5..5. * Add some random clamping in model.py * Add reflect=0.1 to invocations of random_clamp() * Remove in_balancer. * Revert model.py so there are no constraints on the output. * Implement randomized backprop for softmax. * Reduce min_abs from 1e-03 to 1e-04 * Add RandomGrad with min_abs=1.0e-04 * Use full precision to do softmax and store ans. * Fix bug in backprop of random_clamp() * Get the randomized backprop for softmax in autocast mode working. * Remove debug print * Reduce min_abs from 1.0e-04 to 5.0e-06 * Add hard limit of attention weights to +- 50 * Use normal implementation of softmax. * Remove use of RandomGrad * Remove the use of random_clamp in conformer.py. * Reduce the limit on attention weights from 50 to 25. * Reduce min_prob of ActivationBalancer from 0.1 to 0.05. * Penalize too large weights in softmax of AttentionDownsample() * Also apply limit on logit in SimpleCombiner * Increase limit on logit for SimpleCombiner to 25.0 * Add more diagnostics to debug gradient scale problems * Changes to grad scale logging; increase grad scale more frequently if less than one. * Add logging * Remove comparison diagnostics, which were not that useful. * Configuration changes: scores limit 5->10, min_prob 0.05->0.1, cur_grad_scale more aggressive increase * Reset optimizer state when we change loss function definition. * Make warmup period decrease scale on simple loss, leaving pruned loss scale constant. * Cosmetic change * Increase initial-lr from 0.05 to 0.06. * Increase initial-lr from 0.06 to 0.075 and decrease lr-epochs from 3.5 to 3. * Fixes to logging statements. * Introduce warmup schedule in optimizer * Increase grad_scale to Whiten module * Add inf check hooks * Renaming in optim.py; remove step() from scan_pessimistic_batches_for_oom in train.py * Change base lr to 0.1, also rename from initial lr in train.py * Adding activation balancers after simple_am_prob and simple_lm_prob * Reduce max_abs on am_balancer * Increase max_factor in final lm_balancer and am_balancer * Use penalize_abs_values_gt, not ActivationBalancer. * Trying to reduce grad_scale of Whiten() from 0.02 to 0.01. * Add hooks.py, had negleted to git add it. * don't do penalize_values_gt on simple_lm_proj and simple_am_proj; reduce --base-lr from 0.1 to 0.075 * Increase probs of activation balancer and make it decay slower. * Dont print out full non-finite tensor * Increase default max_factor for ActivationBalancer from 0.02 to 0.04; decrease max_abs in ConvolutionModule.deriv_balancer2 from 100.0 to 20.0 * reduce initial scale in GradScaler * Increase max_abs in ActivationBalancer of conv module from 20 to 50 * --base-lr0.075->0.5; --lr-epochs 3->3.5 * Revert 179->180 change, i.e. change max_abs for deriv_balancer2 back from 50.0 20.0 * Save some memory in the autograd of DoubleSwish. * Change the discretization of the sigmoid to be expectation preserving. * Fix randn to rand * Try a more exact way to round to uint8 that should prevent ever wrapping around to zero * Make it use float16 if in amp but use clamp to avoid wrapping error * Store only half precision output for softmax. * More memory efficient backprop for DoubleSwish. * Change to warmup schedule. * Changes to more accurately estimate OOM conditions * Reduce cutoff from 100 to 5 for estimating OOM with warmup * Make 20 the limit for warmup_count * Cast to float16 in DoubleSwish forward * Hopefully make penalize_abs_values_gt more memory efficient. * Add logging about memory used. * Change scalar_max in optim.py from 2.0 to 5.0 * Regularize how we apply the min and max to the eps of BasicNorm * Fix clamping of bypass scale; remove a couple unused variables. * Increase floor on bypass_scale from 0.1 to 0.2. * Increase bypass_scale from 0.2 to 0.4. * Increase bypass_scale min from 0.4 to 0.5 * Rename conformer.py to zipformer.py * Rename Conformer to Zipformer * Update decode.py by copying from pruned_transducer_stateless5 and changing directory name * Remove some unused variables. * Fix clamping of epsilon * Refactor zipformer for more flexibility so we can change number of encoder layers. * Have a 3rd encoder, at downsampling factor of 8. * Refactor how the downsampling is done so that it happens later, but the 1st encoder stack still operates after a subsampling of 2. * Fix bug RE seq lengths * Have 4 encoder stacks * Have 6 different encoder stacks, U-shaped network. * Reduce dim of linear positional encoding in attention layers. * Reduce min of bypass_scale from 0.5 to 0.3, and make it not applied in test mode. * Tuning change to num encoder layers, inspired by relative param importance. * Make decoder group size equal to 4. * Add skip connections as in normal U-net * Avoid falling off the loop for weird inputs * Apply layer-skip dropout prob * Have warmup schedule for layer-skipping * Rework how warmup count is produced; should not affect results. * Add warmup schedule for zipformer encoder layer, from 1.0 -> 0.2. * Reduce initial clamp_min for bypass_scale from 1.0 to 0.5. * Restore the changes from scaled_adam_219 and scaled_adam_exp220, accidentally lost, re layer skipping * Change to schedule of bypass_scale min: make it larger, decrease slower. * Change schedule after initial loss not promising * Implement pooling module, add it after initial feedforward. * Bug fix * Introduce dropout rate to dynamic submodules of conformer. * Introduce minimum probs in the SimpleCombiner * Add bias in weight module * Remove dynamic weights in SimpleCombine * Remove the 5th of 6 encoder stacks * Fix some typos * small fixes * small fixes * Copy files * Update decode.py * Add changes from the master * Add changes from the master * update results * Add CI * Small fixes * Small fixes Co-authored-by: Daniel Povey <dpovey@gmail.com>
1368 lines
41 KiB
Python
Executable File
1368 lines
41 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Wei Kang,
|
|
# Mingshuang Luo,)
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|
|
|
cd egs/librispeech/ASR/
|
|
./prepare.sh
|
|
./prepare_giga_speech.sh
|
|
|
|
./pruned_transducer_stateless8/train.py \
|
|
--world-size 4 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--exp-dir pruned_transducer_stateless8/exp \
|
|
--full-libri 1 \
|
|
--max-duration 300
|
|
|
|
# For mix precision training:
|
|
|
|
./pruned_transducer_stateless8/train.py \
|
|
--world-size 4 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--use-fp16 1 \
|
|
--exp-dir pruned_transducer_stateless8/exp \
|
|
--full-libri 1 \
|
|
--max-duration 550
|
|
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import random
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import k2
|
|
import optim
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from asr_datamodule import AsrDataModule
|
|
from decoder import Decoder
|
|
from gigaspeech import GigaSpeech
|
|
from joiner import Joiner
|
|
from lhotse import CutSet, load_manifest
|
|
from lhotse.cut import Cut
|
|
from lhotse.dataset.sampling.base import CutSampler
|
|
from lhotse.utils import fix_random_seed
|
|
from librispeech import LibriSpeech
|
|
from model import Transducer
|
|
from optim import Eden, ScaledAdam
|
|
from torch import Tensor
|
|
from torch.cuda.amp import GradScaler
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from zipformer import Zipformer
|
|
|
|
from icefall import diagnostics
|
|
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.checkpoint import (
|
|
save_checkpoint_with_global_batch_idx,
|
|
update_averaged_model,
|
|
)
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
LRSchedulerType = Union[
|
|
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
]
|
|
|
|
|
|
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
|
if isinstance(model, DDP):
|
|
# get underlying nn.Module
|
|
model = model.module
|
|
for module in model.modules():
|
|
if hasattr(module, "batch_count"):
|
|
module.batch_count = batch_count
|
|
|
|
|
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
|
parser.add_argument(
|
|
"--num-encoder-layers",
|
|
type=str,
|
|
default="2,4,3,2,4",
|
|
help="Number of zipformer encoder layers, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--feedforward-dims",
|
|
type=str,
|
|
default="1024,1024,2048,2048,1024",
|
|
help="Feedforward dimension of the zipformer encoder layers, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nhead",
|
|
type=str,
|
|
default="8,8,8,8,8",
|
|
help="Number of attention heads in the zipformer encoder layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--encoder-dims",
|
|
type=str,
|
|
default="384,384,384,384,384",
|
|
help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--attention-dims",
|
|
type=str,
|
|
default="192,192,192,192,192",
|
|
help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated;
|
|
not the same as embedding dimension.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--encoder-unmasked-dims",
|
|
type=str,
|
|
default="256,256,256,256,256",
|
|
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
|
|
"Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance "
|
|
" worse.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--zipformer-downsampling-factors",
|
|
type=str,
|
|
default="1,2,4,8,2",
|
|
help="Downsampling factor for each stack of encoder layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--cnn-module-kernels",
|
|
type=str,
|
|
default="31,31,31,31,31",
|
|
help="Sizes of kernels in convolution modules",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoder-dim",
|
|
type=int,
|
|
default=512,
|
|
help="Embedding dimension in the decoder model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--joiner-dim",
|
|
type=int,
|
|
default=512,
|
|
help="""Dimension used in the joiner model.
|
|
Outputs from the encoder and decoder model are projected
|
|
to this dimension before adding.
|
|
""",
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--full-libri",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, use 960h LibriSpeech. "
|
|
"Otherwise, use 100h subset.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=30,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-batch",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --start-epoch is ignored and
|
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless8/exp",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--base-lr", type=float, default=0.05, help="The base learning rate."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-batches",
|
|
type=float,
|
|
default=5000,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-epochs",
|
|
type=float,
|
|
default=3.5,
|
|
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; "
|
|
"2 means tri-gram",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--prune-range",
|
|
type=int,
|
|
default=5,
|
|
help="The prune range for rnnt loss, it means how many symbols(context)"
|
|
"we are using to compute the loss",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-scale",
|
|
type=float,
|
|
default=0.25,
|
|
help="The scale to smooth the loss with lm "
|
|
"(output of prediction network) part.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--am-scale",
|
|
type=float,
|
|
default=0.0,
|
|
help="The scale to smooth the loss with am (output of encoder network)"
|
|
"part.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--simple-loss-scale",
|
|
type=float,
|
|
default=0.5,
|
|
help="To get pruning ranges, we will calculate a simple version"
|
|
"loss(joiner is just addition), this simple loss also uses for"
|
|
"training (as a regularization item). We will scale the simple loss"
|
|
"with this parameter before adding to the final loss.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--print-diagnostics",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Accumulate stats on activations, print them and exit.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--inf-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Add hooks to check for infinite module outputs and gradients.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--save-every-n",
|
|
type=int,
|
|
default=2000,
|
|
help="""Save checkpoint after processing this number of batches"
|
|
periodically. We save checkpoint to exp-dir/ whenever
|
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
|
end of each epoch where `xxx` is the epoch number counting from 0.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=30,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=200,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fp16",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use half precision training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--giga-prob",
|
|
type=float,
|
|
default=0.5,
|
|
help="The probability to select a batch from the GigaSpeech dataset",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- subsampling_factor: The subsampling factor for the model.
|
|
|
|
- encoder_dim: Hidden dim for multi-head attention model.
|
|
|
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
|
|
|
- warm_step: The warmup period that dictates the decay of the
|
|
scale on "simple" (un-pruned) loss.
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 50,
|
|
"reset_interval": 200,
|
|
"valid_interval": 3000, # For the 100h subset, use 800
|
|
# parameters for zipformer
|
|
"feature_dim": 80,
|
|
"subsampling_factor": 4, # not passed in, this is fixed.
|
|
"warm_step": 2000,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
# TODO: We can add an option to switch between Zipformer and Transformer
|
|
def to_int_tuple(s: str):
|
|
return tuple(map(int, s.split(",")))
|
|
|
|
encoder = Zipformer(
|
|
num_features=params.feature_dim,
|
|
output_downsampling_factor=2,
|
|
zipformer_downsampling_factors=to_int_tuple(
|
|
params.zipformer_downsampling_factors
|
|
),
|
|
encoder_dims=to_int_tuple(params.encoder_dims),
|
|
attention_dim=to_int_tuple(params.attention_dims),
|
|
encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims),
|
|
nhead=to_int_tuple(params.nhead),
|
|
feedforward_dim=to_int_tuple(params.feedforward_dims),
|
|
cnn_module_kernels=to_int_tuple(params.cnn_module_kernels),
|
|
num_encoder_layers=to_int_tuple(params.num_encoder_layers),
|
|
)
|
|
return encoder
|
|
|
|
|
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
decoder = Decoder(
|
|
vocab_size=params.vocab_size,
|
|
decoder_dim=params.decoder_dim,
|
|
blank_id=params.blank_id,
|
|
context_size=params.context_size,
|
|
)
|
|
return decoder
|
|
|
|
|
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
joiner = Joiner(
|
|
encoder_dim=int(params.encoder_dims.split(",")[-1]),
|
|
decoder_dim=params.decoder_dim,
|
|
joiner_dim=params.joiner_dim,
|
|
vocab_size=params.vocab_size,
|
|
)
|
|
return joiner
|
|
|
|
|
|
def get_transducer_model(
|
|
params: AttributeDict,
|
|
enable_giga: bool = True,
|
|
) -> nn.Module:
|
|
encoder = get_encoder_model(params)
|
|
decoder = get_decoder_model(params)
|
|
joiner = get_joiner_model(params)
|
|
|
|
if enable_giga:
|
|
logging.info("Use giga")
|
|
decoder_giga = get_decoder_model(params)
|
|
joiner_giga = get_joiner_model(params)
|
|
else:
|
|
logging.info("Disable giga")
|
|
decoder_giga = None
|
|
joiner_giga = None
|
|
|
|
model = Transducer(
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
joiner=joiner,
|
|
decoder_giga=decoder_giga,
|
|
joiner_giga=joiner_giga,
|
|
encoder_dim=int(params.encoder_dims.split(",")[-1]),
|
|
decoder_dim=params.decoder_dim,
|
|
joiner_dim=params.joiner_dim,
|
|
vocab_size=params.vocab_size,
|
|
)
|
|
return model
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
model_avg: nn.Module = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_batch is positive, it will load the checkpoint from
|
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
|
params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The scheduler that we are using.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_batch > 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
|
elif params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
if params.start_batch > 0:
|
|
if "cur_epoch" in saved_params:
|
|
params["start_epoch"] = saved_params["cur_epoch"]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
model_avg: Optional[nn.Module] = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
sampler: Optional[CutSampler] = None,
|
|
scaler: Optional[GradScaler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer used in the training.
|
|
sampler:
|
|
The sampler for the training dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def is_libri(c: Cut) -> bool:
|
|
"""Return True if this cut is from the LibriSpeech dataset.
|
|
|
|
Note:
|
|
During data preparation, we set the custom field in
|
|
the supervision segment of GigaSpeech to dict(origin='giga')
|
|
See ../local/preprocess_gigaspeech.py.
|
|
"""
|
|
return c.supervisions[0].custom is None
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
sp: spm.SentencePieceProcessor,
|
|
batch: dict,
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute transducer loss given the model and its inputs.
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of Zipformer in our case.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
warmup: a floating point value which increases throughout training;
|
|
values >= 1.0 are fully warmed up and have all modules present.
|
|
"""
|
|
device = (
|
|
model.device
|
|
if isinstance(model, DDP)
|
|
else next(model.parameters()).device
|
|
)
|
|
feature = batch["inputs"]
|
|
# at entry, feature is (N, T, C)
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
libri = is_libri(supervisions["cut"][0])
|
|
batch_idx_train = params.batch_idx_train
|
|
warm_step = params.warm_step
|
|
|
|
texts = batch["supervisions"]["text"]
|
|
y = sp.encode(texts, out_type=int)
|
|
y = k2.RaggedTensor(y).to(device)
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
simple_loss, pruned_loss = model(
|
|
x=feature,
|
|
x_lens=feature_lens,
|
|
y=y,
|
|
libri=libri,
|
|
prune_range=params.prune_range,
|
|
am_scale=params.am_scale,
|
|
lm_scale=params.lm_scale,
|
|
)
|
|
|
|
s = params.simple_loss_scale
|
|
# take down the scale on the simple loss from 1.0 at the start
|
|
# to params.simple_loss scale by warm_step.
|
|
simple_loss_scale = (
|
|
s
|
|
if batch_idx_train >= warm_step
|
|
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
|
|
)
|
|
pruned_loss_scale = (
|
|
1.0
|
|
if batch_idx_train >= warm_step
|
|
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
|
)
|
|
|
|
loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
info["frames"] = (
|
|
(feature_lens // params.subsampling_factor).sum().item()
|
|
)
|
|
|
|
# Note: We use reduction=sum while computing the loss.
|
|
info["loss"] = loss.detach().cpu().item()
|
|
info["simple_loss"] = simple_loss.detach().cpu().item()
|
|
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
|
|
|
return loss, info
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
sp: spm.SentencePieceProcessor,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
model.eval()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
sp: spm.SentencePieceProcessor,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
giga_train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
rng: random.Random,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
giga_train_dl:
|
|
Dataloader for the GigaSpeech training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
rng:
|
|
For selecting which dataset to use.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
|
|
libri_tot_loss = MetricsTracker()
|
|
giga_tot_loss = MetricsTracker()
|
|
tot_loss = MetricsTracker()
|
|
|
|
# index 0: for LibriSpeech
|
|
# index 1: for GigaSpeech
|
|
# This sets the probabilities for choosing which datasets
|
|
dl_weights = [1 - params.giga_prob, params.giga_prob]
|
|
|
|
iter_libri = iter(train_dl)
|
|
iter_giga = iter(giga_train_dl)
|
|
|
|
batch_idx = 0
|
|
|
|
while True:
|
|
idx = rng.choices((0, 1), weights=dl_weights, k=1)[0]
|
|
dl = iter_libri if idx == 0 else iter_giga
|
|
|
|
try:
|
|
batch = next(dl)
|
|
except StopIteration:
|
|
name = "libri" if idx == 0 else "giga"
|
|
logging.info(f"{name} reaches end of dataloader")
|
|
break
|
|
|
|
batch_idx += 1
|
|
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
|
|
libri = is_libri(batch["supervisions"]["cut"][0])
|
|
|
|
try:
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
if libri:
|
|
libri_tot_loss = (
|
|
libri_tot_loss * (1 - 1 / params.reset_interval)
|
|
) + loss_info
|
|
prefix = "libri" # for logging only
|
|
else:
|
|
giga_tot_loss = (
|
|
giga_tot_loss * (1 - 1 / params.reset_interval)
|
|
) + loss_info
|
|
prefix = "giga"
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
scaler.scale(loss).backward()
|
|
set_batch_count(model, params.batch_idx_train)
|
|
scheduler.step_batch(params.batch_idx_train)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
except: # noqa
|
|
display_and_save_batch(batch, params=params, sp=sp)
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if (
|
|
rank == 0
|
|
and params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
):
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.save_every_n == 0
|
|
):
|
|
save_checkpoint_with_global_batch_idx(
|
|
out_dir=params.exp_dir,
|
|
global_batch_idx=params.batch_idx_train,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
remove_checkpoints(
|
|
out_dir=params.exp_dir,
|
|
topk=params.keep_last_k,
|
|
rank=rank,
|
|
)
|
|
|
|
if batch_idx % 100 == 0 and params.use_fp16:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
if cur_grad_scale < 1.0 or (
|
|
cur_grad_scale < 8.0 and batch_idx % 400 == 0
|
|
):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
if cur_grad_scale < 0.01:
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
raise RuntimeError(
|
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
|
)
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
cur_lr = scheduler.get_last_lr()[0]
|
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, {prefix}_loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], "
|
|
f"libri_tot_loss[{libri_tot_loss}], "
|
|
f"giga_tot_loss[{giga_tot_loss}], "
|
|
f"batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}, "
|
|
+ (
|
|
f"grad_scale: {scaler._scale.item()}"
|
|
if params.use_fp16
|
|
else ""
|
|
)
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
|
|
loss_info.write_summary(
|
|
tb_writer,
|
|
f"train/current_{prefix}_",
|
|
params.batch_idx_train,
|
|
)
|
|
tot_loss.write_summary(
|
|
tb_writer, "train/tot_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(
|
|
tb_writer, "train/tot_", params.batch_idx_train
|
|
)
|
|
libri_tot_loss.write_summary(
|
|
tb_writer, "train/libri_tot_", params.batch_idx_train
|
|
)
|
|
giga_tot_loss.write_summary(
|
|
tb_writer, "train/giga_tot_", params.batch_idx_train
|
|
)
|
|
if params.use_fp16:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale",
|
|
cur_grad_scale,
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
if (
|
|
batch_idx % params.valid_interval == 0
|
|
and not params.print_diagnostics
|
|
):
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
|
|
def remove_short_and_long_utt(c: Cut):
|
|
# Keep only utterances with duration between 1 second and 20 seconds
|
|
#
|
|
# Caution: There is a reason to select 20.0 here. Please see
|
|
# ../local/display_manifest_statistics.py
|
|
#
|
|
# You should use ../local/display_manifest_statistics.py to get
|
|
# an utterance duration distribution for your dataset to select
|
|
# the threshold
|
|
return 1.0 <= c.duration <= 20.0
|
|
|
|
cuts = cuts.filter(remove_short_and_long_utt)
|
|
|
|
return cuts
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
if params.full_libri is False:
|
|
params.valid_interval = 1600
|
|
|
|
fix_random_seed(params.seed)
|
|
rng = random.Random(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params, enable_giga=True)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
assert params.save_every_n >= params.average_period
|
|
model_avg: Optional[nn.Module] = None
|
|
if rank == 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
|
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
checkpoints = load_checkpoint_if_available(
|
|
params=params, model=model, model_avg=model_avg
|
|
)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
|
|
|
optimizer = ScaledAdam(
|
|
model.parameters(), lr=params.base_lr, clipping_scale=2.0
|
|
)
|
|
|
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
|
|
|
if checkpoints and "optimizer" in checkpoints:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
if (
|
|
checkpoints
|
|
and "scheduler" in checkpoints
|
|
and checkpoints["scheduler"] is not None
|
|
):
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
2 ** 22
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
|
|
|
train_cuts = librispeech.train_clean_100_cuts()
|
|
if params.full_libri:
|
|
train_cuts += librispeech.train_clean_360_cuts()
|
|
train_cuts += librispeech.train_other_500_cuts()
|
|
|
|
train_cuts = filter_short_and_long_utterances(train_cuts)
|
|
|
|
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
|
|
# XL 10k hours
|
|
# L 2.5k hours
|
|
# M 1k hours
|
|
# S 250 hours
|
|
# XS 10 hours
|
|
# DEV 12 hours
|
|
# Test 40 hours
|
|
if params.full_libri:
|
|
logging.info("Using the XL subset of GigaSpeech (10k hours)")
|
|
train_giga_cuts = gigaspeech.train_XL_cuts()
|
|
else:
|
|
logging.info("Using the S subset of GigaSpeech (250 hours)")
|
|
train_giga_cuts = gigaspeech.train_S_cuts()
|
|
|
|
train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
|
|
train_giga_cuts = train_giga_cuts.repeat(times=None)
|
|
|
|
if args.enable_musan:
|
|
cuts_musan = load_manifest(
|
|
Path(args.manifest_dir) / "musan_cuts.jsonl.gz"
|
|
)
|
|
else:
|
|
cuts_musan = None
|
|
|
|
asr_datamodule = AsrDataModule(args)
|
|
|
|
train_dl = asr_datamodule.train_dataloaders(
|
|
train_cuts,
|
|
on_the_fly_feats=False,
|
|
cuts_musan=cuts_musan,
|
|
)
|
|
|
|
giga_train_dl = asr_datamodule.train_dataloaders(
|
|
train_giga_cuts,
|
|
on_the_fly_feats=False,
|
|
cuts_musan=cuts_musan,
|
|
)
|
|
|
|
valid_cuts = librispeech.dev_clean_cuts()
|
|
valid_cuts += librispeech.dev_other_cuts()
|
|
valid_dl = asr_datamodule.valid_dataloaders(valid_cuts)
|
|
|
|
if False and not params.print_diagnostics:
|
|
scan_pessimistic_batches_for_oom(
|
|
model=model,
|
|
train_dl=train_dl,
|
|
optimizer=optimizer,
|
|
sp=sp,
|
|
params=params,
|
|
)
|
|
|
|
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
scheduler.step_epoch(epoch - 1)
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sp=sp,
|
|
train_dl=train_dl,
|
|
giga_train_dl=giga_train_dl,
|
|
valid_dl=valid_dl,
|
|
rng=rng,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def display_and_save_batch(
|
|
batch: dict,
|
|
params: AttributeDict,
|
|
sp: spm.SentencePieceProcessor,
|
|
) -> None:
|
|
"""Display the batch statistics and save the batch into disk.
|
|
|
|
Args:
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
sp:
|
|
The BPE model.
|
|
"""
|
|
from lhotse.utils import uuid4
|
|
|
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
|
logging.info(f"Saving batch to {filename}")
|
|
torch.save(batch, filename)
|
|
|
|
supervisions = batch["supervisions"]
|
|
features = batch["inputs"]
|
|
|
|
logging.info(f"features shape: {features.shape}")
|
|
|
|
y = sp.encode(supervisions["text"], out_type=int)
|
|
num_tokens = sum(len(i) for i in y)
|
|
logging.info(f"num tokens: {num_tokens}")
|
|
|
|
|
|
def scan_pessimistic_batches_for_oom(
|
|
model: Union[nn.Module, DDP],
|
|
train_dl: torch.utils.data.DataLoader,
|
|
optimizer: torch.optim.Optimizer,
|
|
sp: spm.SentencePieceProcessor,
|
|
params: AttributeDict,
|
|
):
|
|
from lhotse.dataset import find_pessimistic_batches
|
|
|
|
logging.info(
|
|
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
|
|
)
|
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
|
for criterion, cuts in batches.items():
|
|
batch = train_dl.dataset[cuts]
|
|
try:
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, _ = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
loss.backward()
|
|
optimizer.zero_grad()
|
|
except Exception as e:
|
|
if "CUDA out of memory" in str(e):
|
|
logging.error(
|
|
"Your GPU ran out of memory with the current "
|
|
"max_duration setting. We recommend decreasing "
|
|
"max_duration and trying again.\n"
|
|
f"Failing criterion: {criterion} "
|
|
f"(={crit_values[criterion]}) ..."
|
|
)
|
|
display_and_save_batch(batch, params=params, sp=sp)
|
|
raise
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
AsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
assert 0 <= args.giga_prob < 1, args.giga_prob
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|