Fangjun Kuang 855c76655b
Add zipformer from Dan using multi-dataset setup (#675)
* Bug fix

* Change subsamplling factor from 1 to 2

* Implement AttentionCombine as replacement for RandomCombine

* Decrease random_prob from 0.5 to 0.333

* Add print statement

* Apply single_prob mask, so sometimes we just get one layer as output.

* Introduce feature mask per frame

* Include changes from Liyong about padding conformer module.

* Reduce single_prob from 0.5 to 0.25

* Reduce feature_mask_dropout_prob from 0.25 to 0.15.

* Remove dropout from inside ConformerEncoderLayer, for adding to residuals

* Increase feature_mask_dropout_prob from 0.15 to 0.2.

* Swap random_prob and single_prob, to reduce prob of being randomized.

* Decrease feature_mask_dropout_prob back from 0.2 to 0.15, i.e. revert the 43->48 change.

* Randomize order of some modules

* Bug fix

* Stop backprop bug

* Introduce a scale dependent on the masking value

* Implement efficient layer dropout

* Simplify the learned scaling factor on the modules

* Compute valid loss on batch 0.

* Make the scaling factors more global and the randomness of dropout more random

* Bug fix

* Introduce offset in layerdrop_scaleS

* Remove final combination; implement layer drop that drops the final layers.

* Bug fices

* Fix bug RE self.training

* Fix bug setting layerdrop mask

* Fix eigs call

* Add debug info

* Remove warmup

* Remove layer dropout and model-level warmup

* Don't always apply the frame mask

* Slight code cleanup/simplification

* Various fixes, finish implementating frame masking

* Remove debug info

* Don't compute validation if printing diagnostics.

* Apply layer bypass during warmup in a new way, including 2s and 4s of layers.

* Update checkpoint.py to deal with int params

* Revert initial_scale to previous values.

* Remove the feature where it was bypassing groups of layers.

* Implement layer dropout with probability 0.075

* Fix issue with warmup in test time

* Add warmup schedule where dropout disappears from earlier layers first.

* Have warmup that gradually removes dropout from layers; multiply initialization scales by 0.1.

* Do dropout a different way

* Fix bug in warmup

* Remove debug print

* Make the warmup mask per frame.

* Implement layer dropout (in a relatively efficient way)

* Decrease initial keep_prob to 0.25.

* Make it start warming up from the very start, and increase warmup_batches to 6k

* Change warmup schedule and increase warmup_batches from 4k to 6k

* Make the bypass scale trainable.

* Change the initial keep-prob back from 0.25 to 0.5

* Bug fix

* Limit bypass scale to >= 0.1

* Revert "Change warmup schedule and increase warmup_batches from 4k to 6k"

This reverts commit 86845bd5d859ceb6f83cd83f3719c3e6641de987.

* Do warmup by dropping out whole layers.

* Decrease frequency of logging variance_proportion

* Make layerdrop different in different processes.

* For speed, drop the same num layers per job.

* Decrease initial_layerdrop_prob from 0.75 to 0.5

* Revert also the changes in scaled_adam_exp85 regarding warmup schedule

* Remove unused code LearnedScale.

* Reintroduce batching to the optimizer

* Various fixes from debugging with nvtx, but removed the NVTX annotations.

* Only apply ActivationBalancer with prob 0.25.

* Fix s -> scaling for import.

* Increase final layerdrop prob from 0.05 to 0.075

* Fix bug where fewer layers were dropped than should be; remove unnecesary print statement.

* Fix bug in choosing layers to drop

* Refactor RelPosMultiheadAttention to have 2nd forward function and introduce more modules in conformer encoder layer

* Reduce final layerdrop_prob from 0.075 to 0.05.

* Fix issue with diagnostics if stats is None

* Remove persistent attention scores.

* Make ActivationBalancer and MaxEig more efficient.

* Cosmetic improvements

* Change scale_factor_scale from 0.5 to 0.8

* Make the ActivationBalancer regress to the data mean, not zero, when enforcing abs constraint.

* Remove unused config value

* Fix bug when channel_dim < 0

* Fix bug when channel_dim < 0

* Simplify how the positional-embedding scores work in attention (thanks to Zengwei for this concept)

* Revert dropout on attention scores to 0.0.

* This should just be a cosmetic change, regularizing how we get the warmup times from the layers.

* Reduce beta from 0.75 to  0.0.

* Reduce stats period from 10 to 4.

* Reworking of ActivationBalancer code to hopefully balance speed and effectiveness.

* Add debug code for attention weihts and eigs

* Remove debug statement

* Add different debug info.

* Penalize attention-weight entropies above a limit.

* Remove debug statements

* use larger delta but only penalize if small grad norm

* Bug fixes; change debug freq

* Change cutoff for small_grad_norm

* Implement whitening of values in conformer.

* Also whiten the keys in conformer.

* Fix an issue with scaling of grad.

* Decrease whitening limit from 2.0 to 1.1.

* Fix debug stats.

* Reorganize Whiten() code; configs are not the same as before.  Also remove MaxEig for self_attn module

* Bug fix RE float16

* Revert whitening_limit from 1.1 to 2.2.

* Replace MaxEig with Whiten with limit=5.0, and move it to end of ConformerEncoderLayer

* Change LR schedule to start off higher

* Simplify the dropout mask, no non-dropped-out sequences

* Make attention dims configurable, not embed_dim//2, trying 256.

* Reduce attention_dim to 192; cherry-pick scaled_adam_exp130 which is linear_pos interacting with query

* Use half the dim for values, vs. keys and queries.

* Increase initial-lr from 0.04 to 0.05, plus changes for diagnostics

* Cosmetic changes

* Changes to avoid bug in backward hooks, affecting diagnostics.

* Random clip attention scores to -5..5.

* Add some random clamping in model.py

* Add reflect=0.1 to invocations of random_clamp()

* Remove in_balancer.

* Revert model.py so there are no constraints on the output.

* Implement randomized backprop for softmax.

* Reduce min_abs from 1e-03 to 1e-04

* Add RandomGrad with min_abs=1.0e-04

* Use full precision to do softmax and store ans.

* Fix bug in backprop of random_clamp()

* Get the randomized backprop for softmax in autocast mode working.

* Remove debug print

* Reduce min_abs from 1.0e-04 to 5.0e-06

* Add hard limit of attention weights to +- 50

* Use normal implementation of softmax.

* Remove use of RandomGrad

* Remove the use of random_clamp in conformer.py.

* Reduce the limit on attention weights from 50 to 25.

* Reduce min_prob of ActivationBalancer from 0.1 to 0.05.

* Penalize too large weights in softmax of AttentionDownsample()

* Also apply limit on logit in SimpleCombiner

* Increase limit on logit for SimpleCombiner to 25.0

* Add more diagnostics to debug gradient scale problems

* Changes to grad scale logging; increase grad scale more frequently if less than one.

* Add logging

* Remove comparison diagnostics, which were not that useful.

* Configuration changes: scores limit 5->10, min_prob 0.05->0.1, cur_grad_scale more aggressive increase

* Reset optimizer state when we change loss function definition.

* Make warmup period decrease scale on simple loss, leaving pruned loss scale constant.

* Cosmetic change

* Increase initial-lr from 0.05 to 0.06.

* Increase initial-lr from 0.06 to 0.075 and decrease lr-epochs from 3.5 to 3.

* Fixes to logging statements.

* Introduce warmup schedule in optimizer

* Increase grad_scale to Whiten module

* Add inf check hooks

* Renaming in optim.py; remove step() from scan_pessimistic_batches_for_oom in train.py

* Change base lr to 0.1, also rename from initial lr in train.py

* Adding activation balancers after simple_am_prob and simple_lm_prob

* Reduce max_abs on am_balancer

* Increase max_factor in final lm_balancer and am_balancer

* Use penalize_abs_values_gt, not ActivationBalancer.

* Trying to reduce grad_scale of Whiten() from  0.02 to 0.01.

* Add hooks.py, had negleted to  git add it.

* don't do penalize_values_gt on simple_lm_proj and simple_am_proj; reduce --base-lr from 0.1 to  0.075

* Increase probs of activation balancer and make it decay slower.

* Dont print out full non-finite tensor

* Increase default max_factor for ActivationBalancer from 0.02 to 0.04; decrease max_abs in ConvolutionModule.deriv_balancer2 from 100.0 to 20.0

* reduce initial scale in GradScaler

* Increase max_abs in ActivationBalancer of conv module from 20 to 50

* --base-lr0.075->0.5; --lr-epochs 3->3.5

* Revert 179->180 change, i.e. change max_abs for deriv_balancer2 back from 50.0 20.0

* Save some memory in the autograd of DoubleSwish.

* Change the discretization of the sigmoid to be expectation preserving.

* Fix randn to rand

* Try a more exact way to round to uint8 that should prevent ever wrapping around to zero

* Make it use float16 if in amp but use clamp to avoid wrapping error

* Store only half precision output for softmax.

* More memory efficient backprop for DoubleSwish.

* Change to warmup schedule.

* Changes to more accurately estimate OOM conditions

* Reduce cutoff from 100 to 5 for estimating OOM with warmup

* Make 20 the limit for warmup_count

* Cast to float16 in DoubleSwish forward

* Hopefully make penalize_abs_values_gt more memory efficient.

* Add logging about memory used.

* Change scalar_max in optim.py from 2.0 to 5.0

* Regularize how we apply the min and max to the eps of BasicNorm

* Fix clamping of bypass scale; remove a couple unused variables.

* Increase floor on bypass_scale from 0.1 to 0.2.

* Increase bypass_scale from 0.2 to 0.4.

* Increase bypass_scale min from 0.4 to 0.5

* Rename conformer.py to zipformer.py

* Rename Conformer to Zipformer

* Update decode.py by copying from pruned_transducer_stateless5 and changing directory name

* Remove some unused variables.

* Fix clamping of epsilon

* Refactor zipformer for more flexibility so we can change number of encoder layers.

* Have a 3rd encoder, at downsampling factor of 8.

* Refactor how the downsampling is done so that it happens later, but the 1st encoder stack still operates after a subsampling of 2.

* Fix bug RE seq lengths

* Have 4 encoder stacks

* Have 6 different encoder stacks, U-shaped network.

* Reduce dim of linear positional encoding in attention layers.

* Reduce min of bypass_scale from 0.5 to 0.3, and make it not applied in test mode.

* Tuning change to num encoder layers, inspired by relative param importance.

* Make decoder group size equal to 4.

* Add skip connections as in normal U-net

* Avoid falling off the loop for weird inputs

* Apply layer-skip dropout prob

* Have warmup schedule for layer-skipping

* Rework how warmup count is produced; should not affect results.

* Add warmup schedule for zipformer encoder layer, from 1.0 -> 0.2.

* Reduce initial clamp_min for bypass_scale from 1.0 to 0.5.

* Restore the changes from scaled_adam_219 and scaled_adam_exp220,  accidentally lost, re layer skipping

* Change to schedule of bypass_scale min: make it larger, decrease slower.

* Change schedule after initial loss not promising

* Implement pooling module, add it after initial feedforward.

* Bug fix

* Introduce dropout rate to dynamic submodules of conformer.

* Introduce minimum probs in the SimpleCombiner

* Add bias in weight module

* Remove dynamic weights in SimpleCombine

* Remove the 5th of 6 encoder stacks

* Fix some typos

* small fixes

* small fixes

* Copy files

* Update decode.py

* Add changes from the master

* Add changes from the master

* update results

* Add CI

* Small fixes

* Small fixes

Co-authored-by: Daniel Povey <dpovey@gmail.com>
2022-11-15 16:56:05 +08:00

364 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
./pruned_transducer_stateless8/export.py \
--exp-dir ./pruned_transducer_stateless8/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
Usage of this script:
(1) greedy search
./pruned_transducer_stateless8/pretrained.py \
--checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) beam search
./pruned_transducer_stateless8/pretrained.py \
--checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless8/pretrained.py \
--checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./pruned_transducer_stateless8/pretrained.py \
--checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless8/exp/epoch-xx.pt`.
Note: ./pruned_transducer_stateless8/exp/pretrained.pt is generated by
./pruned_transducer_stateless8/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. "
f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params, enable_giga=False)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
model.device = device
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features, batch_first=True, padding_value=math.log(1e-10)
)
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
x=features, x_lens=feature_lengths
)
num_waves = encoder_out.size(0)
hyps = []
msg = f"Using {params.method}"
if params.method == "beam_search":
msg += f" with beam size {params.beam_size}"
logging.info(msg)
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps.append(sp.decode(hyp).split())
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()