icefall/egs/librispeech/ASR/conformer_ctc/gigaspeech_datamodule.py
2021-11-04 16:49:56 +08:00

441 lines
17 KiB
Python

# Copyright (c) 2021 Johns Hopkins University (Piotr Żelasko)
# Apache 2.0
import argparse
import logging
import warnings
from functools import lru_cache
from pathlib import Path
from typing import List, Union
from torch.utils.data import DataLoader
from lhotse import CutSet, KaldifeatFbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
CutConcatenate,
CutMix,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.dataloading import LhotseDataLoader
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from icefall.utils import str2bool
from icefall.dataset.datamodule import DataModule
def get_context_suffix(args, subparser=True):
if subparser:
if args.giga_context_window is None or args.giga_context_window <= 0.0:
ctx_suffix = ""
else:
ctx_suffix = f"_{args.giga_context_direction}{args.giga_context_window}"
else:
if args.context_window is None or args.context_window <= 0.0:
ctx_suffix = ""
else:
ctx_suffix = f"_{args.context_direction}{args.context_window}"
return ctx_suffix
class GigaSpeechAsrDataModule(DataModule):
"""
DataModule for K2 ASR experiments.
It assumes there is always one train and valid dataloader,
It contains all the common data pipeline modules used in ASR experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args):
self.total_train_cuts = 0
self.consumed_cuts = 0
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
subparsers = parser.add_subparsers(help='seperate gigaspeech arguments from librispeech arguments')
parser = subparsers.add_parser(name='giga')
super().add_arguments(parser)
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of PyTorch DataLoaders "
"from Lhotse CutSet's -- they control the effective batch sizes, "
"sampling strategies, applied data augmentations, etc.",
)
group.add_argument(
"--feature-dir",
dest="giga_feature_dir",
type=Path,
default=Path('exp/giga_data'),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
dest="giga_max_duration",
type=int,
default=500.0,
help="Maximum pooled recordings duration (seconds) in a single batch.",
)
group.add_argument(
"--bucketing-sampler",
dest="giga_bucketing_sampler",
type=str2bool,
default=False,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
dest="giga_num_buckets",
type=int,
default=30,
help="The number of buckets for the BucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
dest="giga_concatenate_cuts",
type=str2bool,
default=True,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
dest="giga_duration_factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
dest="giga_gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between concatenated cuts. "
"This padding is filled with noise when noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
dest="giga_on_the_fly_feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature extraction. "
"Will drop existing precomputed feature manifests if available.",
)
group.add_argument(
"--shuffle",
dest="giga_shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
dest="giga_return_cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the field: batch['supervisions']['cut']"
" with the cuts that were used to construct it.",
)
group.add_argument(
"--num-workers",
dest="giga_num_workers",
type=int,
default=4,
help="The number of training dataloader workers that collect the batches.",
)
group.add_argument(
"--num-workers-inner",
dest="giga_num_workers_inner",
type=int,
default=16,
help="The number of sub-workers (replicated for each of training dataloader"
" workers) that parallelize the I/O to collect each batch.",
)
# GigaSpeech specific arguments
group.add_argument(
"--subset",
dest="giga_subset",
type=str,
default="XS",
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
)
group.add_argument(
"--context-window",
dest="giga_context_window",
type=float,
default=0.0,
help="Training cut duration in seconds. "
"Use 0 to train on supervision segments without acoustic context, with variable cut lengths; "
"number larger than zero will create multi-supervisions cuts with actual acoustic context. ",
)
group.add_argument(
"--context-direction",
dest="giga_context_direction",
type=str,
default="center",
help="If context-window is 0, does nothing. "
"If it's larger than 0, determines in which direction (relative to the supervision) "
"to seek for extra acoustic context. Available values: (left|right|center|random).",
)
group.add_argument(
"--use-context-for-test",
dest="giga_use_context_for_text",
type=str2bool,
default=False,
help="Should we read cuts with acoustic context or without it. "
"(note: for now, they may contain duplicated segments)",
)
group.add_argument(
"--small-dev",
dest="giga_small_dev",
type=str2bool,
default=False,
help="Should we use only 1000 utterances for dev (speeds up training)",
)
def validate_args(self):
if self.args.giga_subset in ["L", "XL"]:
assert (
self.args.giga_shuffle == False
), "For GigaSpeech L/XL, you must use --shuffle 0 to avoid eagerly reading pyarrow manifests."
assert (
self.args.giga_bucketing_sampler == False
), "For GigaSpeech L/XL, you must use --bucketing-sampler 0 to avoid eagerly reading pyarrow manifests."
# compute_and_store_features_batch is efficient for L/XL subsets.
# if not self.args.giga_on_the_fly_feats:
# warnings.warn(
# "For GigaSpeech L/XL, we advise to set --on-the-fly-feats 1,"
# " as we do not pre-compute them by default. If you pre-computed them,"
# " ignore this warning."
# )
def train_dataloaders(self) -> DataLoader:
self.validate_args()
logging.info("About to get train cuts")
cuts_train = self.train_cuts()
self.total_train_cuts = len(cuts_train)
self.consumed_cuts = 0
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.giga_feature_dir / "cuts_musan.json.gz")
logging.info("About to create train dataset")
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
if self.args.giga_concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.giga_duration_factor} and gap {self.args.giga_gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.giga_duration_factor, gap=self.args.giga_gap
)
] + transforms
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.giga_return_cuts,
)
if self.args.giga_on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we remove it from data prep stage.
# # Add on-the-fly speed perturbation; since originally it would have increased epoch
# # size by 3, we will apply prob 2/3 and use 3x more epochs.
# # Speed perturbation probably should come first before concatenation,
# # but in principle the transforms order doesn't have to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2 / 3)] + transforms
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
KaldifeatFbank(FbankConfig(num_mel_bins=80)),
num_workers=self.args.giga_num_workers_inner,
),
return_cuts=self.args.giga_return_cuts,
)
if self.args.giga_bucketing_sampler:
logging.info("Using BucketingSampler.")
train_sampler = BucketingSampler(
cuts_train,
max_duration=self.args.giga_max_duration,
shuffle=self.args.giga_shuffle,
num_buckets=self.args.giga_num_buckets,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.giga_max_duration,
shuffle=self.args.giga_shuffle,
)
logging.info("About to create train dataloader")
# train_dl = DataLoader(
# train,
# sampler=train_sampler,
# batch_size=None,
# num_workers=16,
# persistent_workers=True,
# )
train_dl = LhotseDataLoader(
train,
sampler=train_sampler,
num_workers=self.args.giga_num_workers,
prefetch_factor=5,
)
return train_dl
def valid_dataloaders(self) -> DataLoader:
self.validate_args()
logging.info("About to get dev cuts")
cuts_valid = self.valid_cuts()
transforms = []
if self.args.giga_concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.giga_duration_factor, gap=self.args.giga_gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.giga_on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
KaldifeatFbank(FbankConfig(num_mel_bins=80)), num_workers=8
),
return_cuts=self.args.giga_return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.giga_return_cuts,
)
valid_sampler = SingleCutSampler(
cuts_valid,
max_duration=self.args.giga_max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
# valid_dl = DataLoader(
# validate,
# sampler=valid_sampler,
# batch_size=None,
# num_workers=8,
# persistent_workers=True,
# )
valid_dl = LhotseDataLoader(
validate,
sampler=valid_sampler,
num_workers=2,
)
return valid_dl
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
self.validate_args()
cuts = self.test_cuts()
is_list = isinstance(cuts, list)
test_loaders = []
if not is_list:
cuts = [cuts]
for cuts_test in cuts:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=(
OnTheFlyFeatures(KaldifeatFbank(FbankConfig(num_mel_bins=80)), num_workers=8)
if self.args.giga_on_the_fly_feats
else PrecomputedFeatures()
),
return_cuts=self.args.giga_return_cuts,
)
sampler = SingleCutSampler(cuts_test, max_duration=self.args.giga_max_duration)
logging.debug("About to create test dataloader")
# test_dl = DataLoader(test, batch_size=None, sampler=sampler, num_workers=1)
test_dl = LhotseDataLoader(test, sampler=sampler, num_workers=2)
test_loaders.append(test_dl)
if is_list:
return test_loaders
else:
return test_loaders[0]
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
path = (
self.args.giga_feature_dir
/ f"gigaspeech_cuts_{self.args.giga_subset}{get_context_suffix(self.args)}.jsonl.gz"
)
if self.args.giga_subset in ["L", "XL"]:
# "L" and "XL" partitions are large enough that we have to read their manifests lazily;
# The "CutSet" holds a file handle and reads the items sequentially on-the-fly to avoid
# wasting memory and time pre-reading everything. Some operations on "CutSet" won't work,
# e.g. shuffling (or they would have read everything into memory in the process).
# We expect that the manifests read lazily are pre-shuffled, otherwise you might experience
# issues with convergence.
cuts_train = CutSet.from_jsonl_lazy(path)
else:
# For other subsets, just read everything into memory.
cuts_train = CutSet.from_file(path)
return cuts_train
@lru_cache()
def valid_cuts(self) -> CutSet:
if self.args.giga_use_context_for_test:
path = (
self.args.giga_feature_dir
/ f"gigaspeech_cuts_DEV{get_context_suffix(self.args)}.jsonl.gz"
)
else:
path = self.args.giga_feature_dir / f"gigaspeech_cuts_DEV.jsonl.gz"
logging.info(f"About to get valid cuts from {path}")
cuts_valid = load_manifest(path)
if self.args.giga_small_dev:
return cuts_valid.subset(first=1000)
else:
return cuts_valid
@lru_cache()
def test_cuts(self) -> CutSet:
if self.args.giga_use_context_for_test:
path = (
self.args.giga_feature_dir
/ f"gigaspeech_cuts_TEST{get_context_suffix(self.args)}.jsonl.gz"
)
else:
path = self.args.giga_feature_dir / f"gigaspeech_cuts_TEST.jsonl.gz"
logging.info(f"About to get test cuts from {path}")
cuts_test = load_manifest(path)
return cuts_test
def inexhaustible_train_dataloaders(self):
return self
def __iter__(self):
# work horse for inexhuastible_train_dataloaders
while True:
# self.total_train_cuts == 0 for the first run
# self.consumed_cuts == self.total_train_cuts for recreating dataloader
if self.total_train_cuts == 0 or self.consumed_cuts == self.total_train_cuts:
self.train_dl = self.train_dataloaders()
self.consumed_cuts = 0
for batch in self.train_dl:
self.consumed_cuts += len(batch["supervisions"]["text"])
yield batch