mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-14 12:32:20 +00:00
206 lines
5.6 KiB
Python
206 lines
5.6 KiB
Python
#!/usr/bin/env python3
|
|
#
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from model import RnnLmModel
|
|
|
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
|
from icefall.utils import AttributeDict, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=29,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=5,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-size",
|
|
type=int,
|
|
default=500,
|
|
help="Vocabulary size of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--embedding-dim",
|
|
type=int,
|
|
default=2048,
|
|
help="Embedding dim of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--hidden-dim",
|
|
type=int,
|
|
default=2048,
|
|
help="Hidden dim of the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-layers",
|
|
type=int,
|
|
default=3,
|
|
help="Number of RNN layers the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tie-weights",
|
|
type=str2bool,
|
|
default=True,
|
|
help="""True to share the weights between the input embedding layer and the
|
|
last output linear layer
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="rnn_lm/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit",
|
|
type=str2bool,
|
|
default=True,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = AttributeDict({})
|
|
params.update(vars(args))
|
|
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = RnnLmModel(
|
|
vocab_size=params.vocab_size,
|
|
embedding_dim=params.embedding_dim,
|
|
hidden_dim=params.hidden_dim,
|
|
num_layers=params.num_layers,
|
|
tie_weights=params.tie_weights,
|
|
)
|
|
|
|
model.to(device)
|
|
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.jit:
|
|
logging.info("Using torch.jit.script")
|
|
|
|
model.__class__.score_token_onnx = torch.jit.export(
|
|
model.__class__.score_token_onnx
|
|
)
|
|
model = torch.jit.script(model)
|
|
filename = params.exp_dir / "cpu_jit.pt"
|
|
model.save(str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
else:
|
|
logging.info("Not using torch.jit.script")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|