icefall/icefall/rnn_lm/export.py

206 lines
5.6 KiB
Python

#!/usr/bin/env python3
#
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
import argparse
import logging
from pathlib import Path
import torch
from model import RnnLmModel
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
from icefall.utils import AttributeDict, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=29,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=5,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--vocab-size",
type=int,
default=500,
help="Vocabulary size of the model",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=2048,
help="Embedding dim of the model",
)
parser.add_argument(
"--hidden-dim",
type=int,
default=2048,
help="Hidden dim of the model",
)
parser.add_argument(
"--num-layers",
type=int,
default=3,
help="Number of RNN layers the model",
)
parser.add_argument(
"--tie-weights",
type=str2bool,
default=True,
help="""True to share the weights between the input embedding layer and the
last output linear layer
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="rnn_lm/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--jit",
type=str2bool,
default=True,
help="""True to save a model after applying torch.jit.script.
""",
)
return parser
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = AttributeDict({})
params.update(vars(args))
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = RnnLmModel(
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
hidden_dim=params.hidden_dim,
num_layers=params.num_layers,
tie_weights=params.tie_weights,
)
model.to(device)
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
model.to("cpu")
model.eval()
if params.jit:
logging.info("Using torch.jit.script")
model.__class__.score_token_onnx = torch.jit.export(
model.__class__.score_token_onnx
)
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()