icefall/egs/fisher_swbd/ASR/prepare.sh
2022-01-14 22:09:53 +00:00

245 lines
6.5 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/LibriSpeech
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - librispeech-vocab.txt
# - librispeech-lexicon.txt
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
mkdir -p $dl_dir
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
#[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
#./local/download_lm.py --out-dir=$dl_dir/lm
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/fisher and /path/to/swbd,
# you can create a symlink
#
# ln -sfv /path/to/fisher $dl_dir/fisher
#
# TODO: remove
LDC_ROOT=/fsx/resources/LDC
for pkg in LDC2004S13 LDC2004T19 LDC2005S13 LDC2005T19 LDC97S62; do
ln -sfv $LDC_ROOT/$pkg $dl_dir/
done
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare Fisher manifests"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/LibriSpeech
mkdir -p data/manifests/fisher
lhotse prepare fisher-english $dl_dir data/manifests/fisher
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare SWBD manifests"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/LibriSpeech
mkdir -p data/manifests/swbd
lhotse prepare switchboard --omit-silence $dl_dir/LDC97S62 data/manifests/swbd
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Combine Fisher + SBWD manifests"
set -x
lhotse combine \
data/manifests/fisher/recordings.jsonl.gz \
data/manifests/swbd/swbd_recordings.jsonl \
data/manifests/fisher-swbd_recordings.jsonl.gz
lhotse combine \
data/manifests/fisher/supervisions.jsonl.gz \
data/manifests/swbd/swbd_supervisions.jsonl \
data/manifests/fisher-swbd_supervisions.jsonl.gz
python local/normalize_and_filter_supervisions.py \
data/manifests/fisher-swbd_supervisions.jsonl.gz \
data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \
lhotse cut simple \
-r data/manifests/fisher-swbd_recordings.jsonl.gz \
-s data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \
data/manifests/fisher-swbd_cuts_unshuf.jsonl.gz
gunzip -c data/manifests/fisher-swbd_cuts_unshuf.jsonl.gz \
| shuf \
| gzip -c \
> data/manifests/fisher-swbd_cuts.jsonl.gz
set +x
fi
# TODO: optional stage 5, compute features
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Dump transcripts for LM training"
mkdir -p data/lm
gunzip -c data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \
| jq '.text' \
| sed 's:"::g' \
> data/lm/transcript_words.txt
fi
#if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
# log "Stage 3: Compute fbank for librispeech"
# mkdir -p data/fbank
# ./local/compute_fbank_librispeech.py
#fi
#
#if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
# log "Stage 4: Compute fbank for musan"
# mkdir -p data/fbank
# ./local/compute_fbank_musan.py
#fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare lexicon using g2p_en"
lang_dir=data/lang_phone
mkdir -p $lang_dir
# Add special words to words.txt
echo "<eps> 0" > $lang_dir/words.txt
echo "!SIL 1" >> $lang_dir/words.txt
echo "<UNK> 2" >> $lang_dir/words.txt
# Add regular words to words.txt
gunzip -c data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \
| jq '.text' \
| sed 's:"::g' \
| sed 's: :\n:g' \
| sort \
| uniq \
| awk '{print $0,NR+2}' \
>> $lang_dir/words.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
pip install g2p_en
./local/prepare_lang_g2pen.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript data/lm/transcript_words.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
fi
done
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Train LM"
lm_dir=data/lm
if [ ! -f $lm_dir/G.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lm_dir/transcript_words.txt \
-lm $lm_dir/G.arpa
fi
if [ ! -f $lm_dir/G_3_gram.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$lm_dir/G.arpa > $lm_dir/G_3_gram.fst.txt
fi
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
done
fi