Yifan Yang 8023493029
update
2024-01-01 20:09:22 +08:00

106 lines
3.2 KiB
Python

# Copyright 2023 Xiaomi Corporation (authors: Yifan Yang)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict
import torch
from lhotse import validate
from lhotse.audio.utils import suppress_audio_loading_errors
from lhotse.cut import CutSet
from lhotse.dataset.collation import read_audio_from_cuts
from torch.utils.data.dataloader import default_collate
from transformers import Wav2Vec2FeatureExtractor
class HubertAsrDataset(torch.utils.data.Dataset):
"""
In this implementation, there will always be a single channel.
Returns:
.. code-block::
{
'audio': (B x NumSamples) float tensor
'audio_lens': (B, ) int tensor
}
"""
def __init__(self, collate: bool = True) -> None:
super().__init__()
self.feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_side="right",
padding_value=0,
do_normalize=True,
return_attention_mask=True,
feature_extractor_type="Wav2Vec2FeatureExtractor",
)
def __getitem__(self, cuts: CutSet) -> Dict[str, Any]:
self._validate(cuts)
audio, _ = read_audio_from_cuts(cuts, return_tensors=False)
audio = self.feature_extractor(
audio,
padding=True,
return_tensors="pt",
sampling_rate=16000,
).input_values
audio_lens = torch.tensor([cut.num_samples for cut in cuts], dtype=torch.int32)
return {
"cuts": cuts,
"audio": audio,
"audio_lens": audio_lens,
"supervisions": default_collate(
[
{
"text": supervision.text,
}
for sequence_idx, cut in enumerate(cuts)
for supervision in cut.supervisions
]
),
}
def _validate(self, cuts: CutSet) -> None:
validate(cuts)
assert all(cut.has_recording for cut in cuts)
if __name__ == "__main__":
from lhotse import load_manifest_lazy
from lhotse.dataset import DynamicBucketingSampler
from torch.utils.data import DataLoader
dataset = HubertAsrDataset()
cuts = load_manifest_lazy("data/fbank/librispeech_cuts_train-clean-100.jsonl.gz")
sampler = DynamicBucketingSampler(
cuts,
max_duration=100,
shuffle=False,
)
dl = DataLoader(
dataset,
batch_size=None,
sampler=sampler,
num_workers=2,
)
for batch_idx, batch in enumerate(dl):
break