icefall/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst
hairyputtar 800bf4b6a2
fix more typos (#1340)
* fix more typos

* fix typo

* fix typo

* fix typo
2023-10-27 11:46:28 +08:00

549 lines
18 KiB
ReStructuredText

.. _non_streaming_librispeech_pruned_transducer_stateless:
Pruned transducer statelessX
============================
This tutorial shows you how to run a conformer transducer model
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
.. Note::
The tutorial is suitable for `pruned_transducer_stateless <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless>`__,
`pruned_transducer_stateless2 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless2>`__,
`pruned_transducer_stateless4 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless4>`__,
`pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless5>`__,
We will take pruned_transducer_stateless4 as an example in this tutorial.
.. HINT::
We assume you have read the page :ref:`install icefall` and have setup
the environment for ``icefall``.
.. HINT::
We recommend you to use a GPU or several GPUs to run this recipe.
.. hint::
Please scroll down to the bottom of this page to find download links
for pretrained models if you don't want to train a model from scratch.
We use pruned RNN-T to compute the loss.
.. note::
You can find the paper about pruned RNN-T at the following address:
`<https://arxiv.org/abs/2206.13236>`_
The transducer model consists of 3 parts:
- Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey)
- Decoder, a.k.a, the prediction network. We use a stateless model consisting of
``nn.Embedding`` and ``nn.Conv1d``
- Joiner, a.k.a, the joint network.
.. caution::
Contrary to the conventional RNN-T models, we use a stateless decoder.
That is, it has no recurrent connections.
Data preparation
----------------
.. hint::
The data preparation is the same as other recipes on LibriSpeech dataset,
if you have finished this step, you can skip to ``Training`` directly.
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./prepare.sh
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
All you need to do is to run it.
The data preparation contains several stages, you can use the following two
options:
- ``--stage``
- ``--stop-stage``
to control which stage(s) should be run. By default, all stages are executed.
For example,
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0
means to run only stage 0.
To run stage 2 to stage 5, use:
.. code-block:: bash
$ ./prepare.sh --stage 2 --stop-stage 5
.. HINT::
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
``./prepare.sh`` won't re-download them.
.. NOTE::
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
are saved in ``./data`` directory.
We provide the following YouTube video showing how to run ``./prepare.sh``.
.. note::
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
.. youtube:: ofEIoJL-mGM
Training
--------
Configurable options
~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/train.py --help
shows you the training options that can be passed from the commandline.
The following options are used quite often:
- ``--exp-dir``
The directory to save checkpoints, training logs and tensorboard.
- ``--full-libri``
If it's True, the training part uses all the training data, i.e.,
960 hours. Otherwise, the training part uses only the subset
``train-clean-100``, which has 100 hours of training data.
.. CAUTION::
The training set is perturbed by speed with two factors: 0.9 and 1.1.
If ``--full-libri`` is True, each epoch actually processes
``3x960 == 2880`` hours of data.
- ``--num-epochs``
It is the number of epochs to train. For instance,
``./pruned_transducer_stateless4/train.py --num-epochs 30`` trains for 30 epochs
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
in the folder ``./pruned_transducer_stateless4/exp``.
- ``--start-epoch``
It's used to resume training.
``./pruned_transducer_stateless4/train.py --start-epoch 10`` loads the
checkpoint ``./pruned_transducer_stateless4/exp/epoch-9.pt`` and starts
training from epoch 10, based on the state from epoch 9.
- ``--world-size``
It is used for multi-GPU single-machine DDP training.
- (a) If it is 1, then no DDP training is used.
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
The following shows some use cases with it.
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
GPU 2 for training. You can do the following:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./pruned_transducer_stateless4/train.py --world-size 2
**Use case 2**: You have 4 GPUs and you want to use all of them
for training. You can do the following:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/train.py --world-size 4
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
for training. You can do the following:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./pruned_transducer_stateless4/train.py --world-size 1
.. caution::
Only multi-GPU single-machine DDP training is implemented at present.
Multi-GPU multi-machine DDP training will be added later.
- ``--max-duration``
It specifies the number of seconds over all utterances in a
batch, before **padding**.
If you encounter CUDA OOM, please reduce it.
.. HINT::
Due to padding, the number of seconds of all utterances in a
batch will usually be larger than ``--max-duration``.
A larger value for ``--max-duration`` may cause OOM during training,
while a smaller value may increase the training time. You have to
tune it.
- ``--use-fp16``
If it is True, the model will train with half precision, from our experiment
results, by using half precision you can train with two times larger ``--max-duration``
so as to get almost 2X speed up.
Pre-configured options
~~~~~~~~~~~~~~~~~~~~~~
There are some training options, e.g., number of encoder layers,
encoder dimension, decoder dimension, number of warmup steps etc,
that are not passed from the commandline.
They are pre-configured by the function ``get_params()`` in
`pruned_transducer_stateless4/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless4/train.py>`_
You don't need to change these pre-configured parameters. If you really need to change
them, please modify ``./pruned_transducer_stateless4/train.py`` directly.
.. NOTE::
The options for `pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless5/train.py>`__ are a little different from
other recipes. It allows you to configure ``--num-encoder-layers``, ``--dim-feedforward``, ``--nhead``, ``--encoder-dim``, ``--decoder-dim``, ``--joiner-dim`` from commandline, so that you can train models with different size with pruned_transducer_stateless5.
Training logs
~~~~~~~~~~~~~
Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless4/exp``.
You will find the following files in that directory:
- ``epoch-1.pt``, ``epoch-2.pt``, ...
These are checkpoint files saved at the end of each epoch, containing model
``state_dict`` and optimizer ``state_dict``.
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
.. code-block:: bash
$ ./pruned_transducer_stateless4/train.py --start-epoch 11
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
These are checkpoint files saved every ``--save-every-n`` batches,
containing model ``state_dict`` and optimizer ``state_dict``.
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
.. code-block:: bash
$ ./pruned_transducer_stateless4/train.py --start-batch 436000
- ``tensorboard/``
This folder contains tensorBoard logs. Training loss, validation loss, learning
rate, etc, are recorded in these logs. You can visualize them by:
.. code-block:: bash
$ cd pruned_transducer_stateless4/exp/tensorboard
$ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall"
It will print something like below:
.. code-block::
TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the logdir.
To stop uploading, press Ctrl-C.
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/
[2022-11-20T15:50:50] Started scanning logdir.
Uploading 4468 scalars...
[2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0 binary objects
Listening for new data in logdir...
Note there is a URL in the above output. Click it and you will see
the following screenshot:
.. figure:: images/librispeech-pruned-transducer-tensorboard-log.jpg
:width: 600
:alt: TensorBoard screenshot
:align: center
:target: https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/
TensorBoard screenshot.
.. hint::
If you don't have access to google, you can use the following command
to view the tensorboard log locally:
.. code-block:: bash
cd pruned_transducer_stateless4/exp/tensorboard
tensorboard --logdir . --port 6008
It will print the following message:
.. code-block::
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
logs.
- ``log/log-train-xxxx``
It is the detailed training log in text format, same as the one
you saw printed to the console during training.
Usage example
~~~~~~~~~~~~~
You can use the following command to start the training using 6 GPUs:
.. code-block:: bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5"
./pruned_transducer_stateless4/train.py \
--world-size 6 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless4/exp \
--full-libri 1 \
--max-duration 300
Decoding
--------
The decoding part uses checkpoints saved by the training part, so you have
to run the training part first.
.. hint::
There are two kinds of checkpoints:
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
of each epoch. You can pass ``--epoch`` to
``pruned_transducer_stateless4/decode.py`` to use them.
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
every ``--save-every-n`` batches. You can pass ``--iter`` to
``pruned_transducer_stateless4/decode.py`` to use them.
We suggest that you try both types of checkpoints and choose the one
that produces the lowest WERs.
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/decode.py --help
shows the options for decoding.
The following shows two examples (for two types of checkpoints):
.. code-block:: bash
for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 25 20; do
for avg in 7 5 3 1; do
./pruned_transducer_stateless4/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m
done
done
done
.. code-block:: bash
for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do
./pruned_transducer_stateless4/decode.py \
--iter $iter \
--avg $avg \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m
done
done
done
.. Note::
Supporting decoding methods are as follows:
- ``greedy_search`` : It takes the symbol with largest posterior probability
of each frame as the decoding result.
- ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and
`espnet/nets/beam_search_transducer.py <https://github.com/espnet/espnet/blob/master/espnet/nets/beam_search_transducer.py#L247>`_
is used as a reference. Basically, it keeps topk states for each frame, and expands the kept states with their own contexts to
next frame.
- ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it
runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded.
- ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and
given ``FSAs``. It is hard to describe the details in several lines of texts, you can read
our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 <https://github.com/k2-fsa/k2/blob/master/k2/csrc/rnnt_decode.h>`_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently.
- ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses
an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph
(with N-gram LM).
- ``fast_beam_search_nbest`` : It produces the decoding results as follows:
- (1) Use ``fast_beam_search`` to get a lattice
- (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()``
- (3) Unique the selected paths
- (4) Intersect the selected paths with the lattice and compute the
shortest path from the intersection result
- (5) The path with the largest score is used as the decoding output.
- ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the
only difference is that it uses ``fast_beam_search_LG`` to generate the lattice.
Export Model
------------
`pruned_transducer_stateless4/export.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless4/export.py>`_ supports exporting checkpoints from ``pruned_transducer_stateless4/exp`` in the following ways.
Export ``model.state_dict()``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Checkpoints saved by ``pruned_transducer_stateless4/train.py`` also include
``optimizer.state_dict()``. It is useful for resuming training. But after training,
we are interested only in ``model.state_dict()``. You can use the following
command to extract ``model.state_dict()``.
.. code-block:: bash
# Assume that --epoch 25 --avg 3 produces the smallest WER
# (You can get such information after running ./pruned_transducer_stateless4/decode.py)
epoch=25
avg=3
./pruned_transducer_stateless4/export.py \
--exp-dir ./pruned_transducer_stateless4/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \
--avg $avg
It will generate a file ``./pruned_transducer_stateless4/exp/pretrained.pt``.
.. hint::
To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless4/decode.py``,
you can run:
.. code-block:: bash
cd pruned_transducer_stateless4/exp
ln -s pretrained.pt epoch-999.pt
And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to
``./pruned_transducer_stateless4/decode.py``.
To use the exported model with ``./pruned_transducer_stateless4/pretrained.py``, you
can run:
.. code-block:: bash
./pruned_transducer_stateless4/pretrained.py \
--checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
Export model using ``torch.jit.script()``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
./pruned_transducer_stateless4/export.py \
--exp-dir ./pruned_transducer_stateless4/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 25 \
--avg 3 \
--jit 1
It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later
load it by ``torch.jit.load("cpu_jit.pt")``.
Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python
are on CPU. You can use ``to("cuda")`` to move them to a CUDA device.
.. NOTE::
You will need this ``cpu_jit.pt`` when deploying with Sherpa framework.
Download pretrained models
--------------------------
If you don't want to train from scratch, you can download the pretrained models
by visiting the following links:
- `pruned_transducer_stateless <https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12>`__
- `pruned_transducer_stateless2 <https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless2-2022-04-29>`__
- `pruned_transducer_stateless4 <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless4-2022-06-03>`__
- `pruned_transducer_stateless5 <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless5-2022-07-07>`__
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
for the details of the above pretrained models
Deploy with Sherpa
------------------
Please see `<https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/librispeech.html#>`_
for how to deploy the models in ``sherpa``.