mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
176 lines
5.7 KiB
Python
176 lines
5.7 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class CombineNet(nn.Module):
|
|
def __init__(
|
|
self, num_features: int, num_classes: int, subsampling_factor: int = 3
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
num_features:
|
|
The input dimension of the audio encoder.
|
|
num_classes:
|
|
The output dimension of the combinenet model.
|
|
subsampling_factor:
|
|
It reduces the number of output frames by this factor.
|
|
"""
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.num_classes = num_classes
|
|
self.subsampling_factor = subsampling_factor
|
|
|
|
# the audio encoder
|
|
self.audio_encoder = nn.Sequential(
|
|
nn.Conv1d(
|
|
in_channels=num_features,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
nn.Conv1d(
|
|
in_channels=512,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
nn.Conv1d(
|
|
in_channels=512,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
nn.Conv1d(
|
|
in_channels=512,
|
|
out_channels=512,
|
|
kernel_size=3,
|
|
stride=self.subsampling_factor, # stride: subsampling_factor!
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.BatchNorm1d(num_features=512, affine=False),
|
|
)
|
|
|
|
# the video encoder
|
|
self.video_encoder = nn.Sequential(
|
|
nn.Conv3d(
|
|
in_channels=3,
|
|
out_channels=32,
|
|
kernel_size=(3, 5, 5),
|
|
stride=(1, 2, 2),
|
|
padding=(1, 2, 2),
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout3d(p=0.1),
|
|
nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)),
|
|
nn.Conv3d(
|
|
in_channels=32,
|
|
out_channels=64,
|
|
kernel_size=(3, 5, 5),
|
|
stride=(1, 1, 1),
|
|
padding=(1, 2, 2),
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout3d(p=0.1),
|
|
nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)),
|
|
nn.Conv3d(
|
|
in_channels=64,
|
|
out_channels=96,
|
|
kernel_size=(3, 3, 3),
|
|
stride=(1, 1, 1),
|
|
padding=(1, 1, 1),
|
|
),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout3d(p=0.1),
|
|
nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)),
|
|
)
|
|
self.linear_visual = nn.Linear(96 * 4 * 8, 512)
|
|
|
|
# the audio-visual combining encoder based on GRU
|
|
self.grus = nn.ModuleList(
|
|
[
|
|
nn.GRU(
|
|
input_size=512 * 2,
|
|
hidden_size=512,
|
|
num_layers=1,
|
|
bidirectional=True,
|
|
)
|
|
for _ in range(4)
|
|
]
|
|
)
|
|
self.gru_bnorms = nn.ModuleList(
|
|
[nn.BatchNorm1d(num_features=1024, affine=False) for _ in range(4)]
|
|
)
|
|
self.dropout = nn.Dropout(0.2)
|
|
self.linear = nn.Linear(
|
|
in_features=512 * 2, out_features=self.num_classes
|
|
)
|
|
|
|
def forward(self, x_v, x_a):
|
|
"""
|
|
Args:
|
|
x_v:
|
|
Its shape is [N, 3, H, W]
|
|
x_a:
|
|
Its shape is [N, C, T]
|
|
Returns:
|
|
The output tensor has shape [N, T, C]
|
|
"""
|
|
x_v = self.video_encoder(x_v)
|
|
x_v = x_v.permute(2, 0, 1, 3, 4).contiguous()
|
|
x_v = x_v.view(x_v.size(0), x_v.size(1), -1)
|
|
x_v = self.linear_visual(x_v)
|
|
x_a = self.audio_encoder(x_a)
|
|
|
|
x_v = x_v.permute(1, 0, 2)
|
|
x_a = x_a.permute(0, 2, 1)
|
|
|
|
# Repeat the visual features
|
|
# to cat with the audio features in time axis.
|
|
x_v_copy = x_v
|
|
x_v_stack = torch.stack((x_v, x_v_copy), dim=2)
|
|
x_v = x_v_stack.view(
|
|
x_v_stack.size(0), 2 * x_v_stack.size(1), x_v_stack.size(3)
|
|
)
|
|
|
|
x = torch.cat((x_v, x_a), dim=2)
|
|
x = x.permute(1, 0, 2) # (N, C, T) -> (T, N, C) -> how GRU expects it
|
|
for gru, bnorm in zip(self.grus, self.gru_bnorms):
|
|
x_new, _ = gru(x)
|
|
x_new = bnorm(x_new.permute(1, 2, 0)).permute(
|
|
2, 0, 1
|
|
) # (T, N, C) -> (N, C, T) -> (T, N, C)
|
|
x_new = self.dropout(x_new)
|
|
x = x_new + x # skip connections
|
|
x = x.transpose(
|
|
1, 0
|
|
) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim
|
|
x = self.linear(x)
|
|
x = nn.functional.log_softmax(x, dim=-1)
|
|
return x
|