icefall/egs/speech_llm/SPEECH2SPEECH/local/compute_whisper_fbank.py
2025-05-08 06:29:46 +00:00

292 lines
9.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
# Copyright 2025 Nvidia (Yuekai Zhang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
python3 local/compute_whisper_fbank.py \
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
--out-dir data/fbank \
--huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \
--audio-key question_audio --text-key answer \
--prefix ultrachat
"""
import argparse
import logging
from pathlib import Path
import torch
from datasets import load_dataset
from lhotse import CutSet, LilcomChunkyWriter, WhisperFbank, WhisperFbankConfig
from vocalnet_lhotse_cutset import LazyCustomDatasetIterator
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--num-mel-bins",
type=int,
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--whisper-fbank",
type=str2bool,
default=True,
help="Use WhisperFbank instead of Fbank. Default: False.",
)
parser.add_argument(
"--resample-to-16kHz",
type=str2bool,
default=True,
help="Resample audio to 16kHz. Default: False.",
)
parser.add_argument(
"--speed-perturb",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
parser.add_argument(
"--out-dir",
type=str,
default="data/fbank",
help="Output directory for the computed features",
)
parser.add_argument(
"--huggingface-dataset-path-or-name",
type=str,
default="/workspace/Belle_1.4M-SLAM-Omni",
help="The path or name of the Huggingface dataset",
)
parser.add_argument(
"--audio-key",
type=str,
default="question_audio",
help="The key in the Huggingface dataset containing the audio data",
)
parser.add_argument(
"--text-key",
type=str,
default="answer",
help="The key in the Huggingface dataset containing the text data",
)
parser.add_argument(
"--prefix",
type=str,
default="belle",
help="""The dataset prefix to use when saving the features""",
)
parser.add_argument(
"--json-file-path",
type=str,
default=None,
help="The path to the json file containing the vocalnet data",
)
parser.add_argument(
"--drop-recordings",
type=str2bool,
default=True,
help="Drop recordings. Default: False.",
)
parser.add_argument(
"--subset",
type=str,
default=None,
help="The subset to use from the Huggingface dataset",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="The split to use from the Huggingface dataset",
)
return parser
def remove_short_and_long_utt(c):
# Keep only utterances with duration between 1 second and 20 seconds
#
# Caution: There is a reason to select 20.0 here. Please see
# ../local/display_manifest_statistics.py
#
# You should use ../local/display_manifest_statistics.py to get
# an utterance duration distribution for your dataset to select
# the threshold
if c.duration < 1.0 or c.duration > 50.0:
# logging.warning(
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
# )
return False
return True
def compute_fbank(args):
in_out_dir = Path(args.out_dir)
in_out_dir.mkdir(parents=True, exist_ok=True)
# number of workers in dataloader
num_workers = 4
# number of seconds in a batch
batch_duration = 10
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
if args.whisper_fbank:
extractor = WhisperFbank(
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
)
else:
raise NotImplementedError("Only WhisperFbank is implemented.")
logging.info(f"device: {device}")
dataset = load_dataset(
args.huggingface_dataset_path_or_name,
args.subset,
streaming=True,
split=args.split,
)
num_shards = dataset.num_shards
num_digits = 5
for i in range(252, num_shards):
shard = dataset.shard(num_shards, i)
# shard = shard.take(10) # for testing
logging.info(
f"Loading dataset shard {i} from {args.huggingface_dataset_path_or_name}"
)
idx = f"{i}".zfill(num_digits)
cut_set = CutSet.from_huggingface_dataset(
shard, audio_key=args.audio_key, text_key=args.text_key
)
cut_set = cut_set.filter(remove_short_and_long_utt)
if args.resample_to_16kHz:
cut_set = cut_set.resample(16000)
if args.speed_perturb:
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{in_out_dir}/feats_{idx}_{args.subset}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
# cut_set = cut_set.trim_to_supervisions(
# keep_overlapping=False, min_duration=None
# )
cuts_path = f"{in_out_dir}/cuts_{args.prefix}.{idx}.{args.subset}.jsonl.gz"
logging.info(f"Saving to {cuts_path}")
# see https://github.com/lhotse-speech/lhotse/issues/1125
if args.drop_recordings:
cut_set.drop_recordings().to_file(cuts_path)
else:
cut_set.to_file(cuts_path)
def compute_fbank_vocalnet(args):
in_out_dir = Path(args.out_dir)
in_out_dir.mkdir(parents=True, exist_ok=True)
# number of workers in dataloader
num_workers = 4
# number of seconds in a batch
batch_duration = 10
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
if args.whisper_fbank:
extractor = WhisperFbank(
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
)
else:
raise NotImplementedError("Only WhisperFbank is implemented.")
logging.info(f"device: {device}")
num_shards = 50
num_digits = 5
for i in range(num_shards):
logging.info(f"Processing shard {i}")
idx = f"{i}".zfill(num_digits)
cut_set = CutSet(
LazyCustomDatasetIterator(
json_file_path=args.json_file_path, shard_id=i, num_shards=num_shards
)
)
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
if args.resample_to_16kHz:
cut_set = cut_set.resample(16000)
if args.speed_perturb:
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{in_out_dir}/feats_{idx}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
cuts_path = f"{in_out_dir}/cuts_{args.prefix}.{idx}.jsonl.gz"
logging.info(f"Saving to {cuts_path}")
# see https://github.com/lhotse-speech/lhotse/issues/1125
cut_set.to_file(cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
if args.json_file_path is not None:
compute_fbank_vocalnet(args)
else:
compute_fbank(args)
if __name__ == "__main__":
main()