2024-10-28 19:06:44 +08:00

262 lines
8.3 KiB
Python

import os
import sys
import warnings
from importlib.util import find_spec
from math import ceil
from pathlib import Path
from typing import Any, Callable, Dict, Tuple
import matplotlib.pyplot as plt
import numpy as np
import torch
# from omegaconf import DictConfig
# from matcha.utils import pylogger, rich_utils
# log = pylogger.get_pylogger(__name__)
def extras(cfg: "DictConfig") -> None:
"""Applies optional utilities before the task is started.
Utilities:
- Ignoring python warnings
- Setting tags from command line
- Rich config printing
:param cfg: A DictConfig object containing the config tree.
"""
# return if no `extras` config
if not cfg.get("extras"):
log.warning("Extras config not found! <cfg.extras=null>")
return
# disable python warnings
if cfg.extras.get("ignore_warnings"):
log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
warnings.filterwarnings("ignore")
# prompt user to input tags from command line if none are provided in the config
if cfg.extras.get("enforce_tags"):
log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
rich_utils.enforce_tags(cfg, save_to_file=True)
# pretty print config tree using Rich library
if cfg.extras.get("print_config"):
log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
def task_wrapper(task_func: Callable) -> Callable:
"""Optional decorator that controls the failure behavior when executing the task function.
This wrapper can be used to:
- make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
- save the exception to a `.log` file
- mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
- etc. (adjust depending on your needs)
Example:
```
@utils.task_wrapper
def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
...
return metric_dict, object_dict
```
:param task_func: The task function to be wrapped.
:return: The wrapped task function.
"""
def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
# execute the task
try:
metric_dict, object_dict = task_func(cfg=cfg)
# things to do if exception occurs
except Exception as ex:
# save exception to `.log` file
log.exception("")
# some hyperparameter combinations might be invalid or cause out-of-memory errors
# so when using hparam search plugins like Optuna, you might want to disable
# raising the below exception to avoid multirun failure
raise ex
# things to always do after either success or exception
finally:
# display output dir path in terminal
log.info(f"Output dir: {cfg.paths.output_dir}")
# always close wandb run (even if exception occurs so multirun won't fail)
if find_spec("wandb"): # check if wandb is installed
import wandb
if wandb.run:
log.info("Closing wandb!")
wandb.finish()
return metric_dict, object_dict
return wrap
def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
"""Safely retrieves value of the metric logged in LightningModule.
:param metric_dict: A dict containing metric values.
:param metric_name: The name of the metric to retrieve.
:return: The value of the metric.
"""
if not metric_name:
log.info("Metric name is None! Skipping metric value retrieval...")
return None
if metric_name not in metric_dict:
raise ValueError(
f"Metric value not found! <metric_name={metric_name}>\n"
"Make sure metric name logged in LightningModule is correct!\n"
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
)
metric_value = metric_dict[metric_name].item()
log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")
return metric_value
def intersperse(lst, item):
# Adds blank symbol
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def save_figure_to_numpy(fig):
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def plot_tensor(tensor):
plt.style.use("default")
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def save_plot(tensor, savepath):
plt.style.use("default")
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
plt.savefig(savepath)
plt.close()
def to_numpy(tensor):
if isinstance(tensor, np.ndarray):
return tensor
elif isinstance(tensor, torch.Tensor):
return tensor.detach().cpu().numpy()
elif isinstance(tensor, list):
return np.array(tensor)
else:
raise TypeError("Unsupported type for conversion to numpy array")
def get_user_data_dir(appname="matcha_tts"):
"""
Args:
appname (str): Name of application
Returns:
Path: path to user data directory
"""
MATCHA_HOME = os.environ.get("MATCHA_HOME")
if MATCHA_HOME is not None:
ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
elif sys.platform == "win32":
import winreg # pylint: disable=import-outside-toplevel
key = winreg.OpenKey(
winreg.HKEY_CURRENT_USER,
r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
)
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
ans = Path(dir_).resolve(strict=False)
elif sys.platform == "darwin":
ans = Path("~/Library/Application Support/").expanduser()
else:
ans = Path.home().joinpath(".local/share")
final_path = ans.joinpath(appname)
final_path.mkdir(parents=True, exist_ok=True)
return final_path
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
import gdown
import wget
if Path(checkpoint_path).exists():
log.debug(f"[+] Model already present at {checkpoint_path}!")
print(f"[+] Model already present at {checkpoint_path}!")
return
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
print(f"[-] Model not found at {checkpoint_path}! Will download it")
checkpoint_path = str(checkpoint_path)
if not use_wget:
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
else:
wget.download(url=url, out=checkpoint_path)
def get_phoneme_durations(durations, phones):
prev = durations[0]
merged_durations = []
# Convolve with stride 2
for i in range(1, len(durations), 2):
if i == len(durations) - 2:
# if it is last take full value
next_half = durations[i + 1]
else:
next_half = ceil(durations[i + 1] / 2)
curr = prev + durations[i] + next_half
prev = durations[i + 1] - next_half
merged_durations.append(curr)
assert len(phones) == len(merged_durations)
assert len(merged_durations) == (len(durations) - 1) // 2
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
start = torch.tensor(0)
duration_json = []
for i, duration in enumerate(merged_durations):
duration_json.append(
{
phones[i]: {
"starttime": start.item(),
"endtime": duration.item(),
"duration": duration.item() - start.item(),
}
}
)
start = duration
assert list(duration_json[-1].values())[0]["endtime"] == sum(
durations
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
return duration_json