icefall/egs/iwslt22_ta/ST/local/compute_fbank_gpu.py
2023-11-01 06:39:24 +03:00

174 lines
5.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Johns Hopkins University (authors: Amir Hussein)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the MGB2 dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import logging
import os
from pathlib import Path
import argparse
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-splits",
type=int,
default=20,
help="Number of splits for the train set.",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Start index of the train set split.",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop index of the train set split.",
)
parser.add_argument(
"--test",
action="store_true",
help="If set, only compute features for the dev and val set.",
)
return parser.parse_args()
def compute_fbank_gpu(args):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = os.cpu_count()
num_mel_bins = 80
sampling_rate = 16000
sr = 16000
dataset_parts = (
"train",
"test1",
"dev",
)
manifests = read_manifests_if_cached(
prefix="iwslt", dataset_parts=dataset_parts, output_dir=src_dir
)
assert manifests is not None
extractor = KaldifeatFbank(
KaldifeatFbankConfig(
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
device="cuda",
)
)
for partition, m in manifests.items():
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
logging.info("About to split cuts into smaller chunks.")
if sr != None:
logging.info(f"Resampling to {sr}")
cut_set = cut_set.resample(sr)
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False,
keep_all_channels=False)
cut_set = cut_set.filter(lambda c: c.duration >= .2 and c.duration <= 30)
if "train" in partition:
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set = cut_set.to_eager()
chunk_size = len(cut_set) // args.num_splits
cut_sets = cut_set.split_lazy(
output_dir=src_dir / f"cuts_train_raw_split{args.num_splits}",
chunk_size=chunk_size,)
start = args.start
stop = min(args.stop, args.num_splits) if args.stop > 0 else args.num_splits
num_digits = len(str(args.num_splits))
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
cuts_train_idx_path = src_dir / f"cuts_train_{idx}.jsonl.gz"
logging.info(f"Processing train split {i}")
cs = cut_sets[i].compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_train_{idx}",
batch_duration=1000,
num_workers=8,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
cs.to_file(cuts_train_idx_path)
else:
logging.info(f"Processing {partition}")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_{partition}",
batch_duration=1000,
num_workers=10,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
cut_set.to_file(output_dir / f"cuts_{partition}.jsonl.gz")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_gpu(args)