mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
159 lines
4.8 KiB
Python
Executable File
159 lines
4.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Johns Hopkins University (authors: Amir Hussein)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features.
|
|
It looks for manifests in the directory data_seame/manifests.
|
|
|
|
The generated fbank features are saved in data_seame/fbank.
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
import argparse
|
|
|
|
from lhotse import CutSet, LilcomChunkyWriter
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
from lhotse.features.kaldifeat import (
|
|
KaldifeatFbank,
|
|
KaldifeatFbankConfig,
|
|
KaldifeatFrameOptions,
|
|
KaldifeatMelOptions,
|
|
)
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--num-splits",
|
|
type=int,
|
|
default=5,
|
|
help="Number of splits for the train set.",
|
|
)
|
|
parser.add_argument(
|
|
"--start",
|
|
type=int,
|
|
default=0,
|
|
help="Start index of the train set split.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop",
|
|
type=int,
|
|
default=-1,
|
|
help="Stop index of the train set split.",
|
|
)
|
|
parser.add_argument(
|
|
"--test",
|
|
action="store_true",
|
|
help="If set, only compute features for the dev and val set.",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compute_fbank_gpu(args):
|
|
src_dir = Path("data_seame/manifests")
|
|
output_dir = Path("data_seame/fbank")
|
|
num_jobs = min(os.cpu_count(),10)
|
|
num_mel_bins = 80
|
|
sampling_rate = 16000
|
|
sr = 16000
|
|
|
|
logging.info(f"Cpus {num_jobs}")
|
|
|
|
dataset_parts = (
|
|
"valid",
|
|
"dev_man",
|
|
"train",
|
|
"dev_sge",
|
|
)
|
|
prefix = ""
|
|
suffix = "jsonl.gz"
|
|
breakpoint
|
|
manifests = read_manifests_if_cached(
|
|
prefix=prefix, dataset_parts=dataset_parts, output_dir=src_dir,suffix=suffix,
|
|
)
|
|
assert manifests is not None
|
|
|
|
extractor = KaldifeatFbank(
|
|
KaldifeatFbankConfig(
|
|
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
|
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
|
device="cuda",
|
|
)
|
|
)
|
|
|
|
for partition, m in manifests.items():
|
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
|
if (output_dir / f"{cuts_filename}").is_file():
|
|
logging.info(f"{partition} already exists - skipping.")
|
|
continue
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
|
|
logging.info("About to split cuts into smaller chunks.")
|
|
if sr != None:
|
|
logging.info(f"Resampling to {sr}")
|
|
cut_set = cut_set.resample(sr)
|
|
|
|
cut_set = cut_set.trim_to_supervisions(
|
|
keep_overlapping=False,
|
|
keep_all_channels=False)
|
|
cut_set = cut_set.filter(lambda c: c.duration >= .2 and c.duration <= 30)
|
|
if "train" in partition:
|
|
cut_set = (
|
|
cut_set
|
|
+ cut_set.perturb_speed(0.9)
|
|
+ cut_set.perturb_speed(1.1)
|
|
)
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
manifest_path=f"{src_dir}/{cuts_filename}",
|
|
batch_duration=2000,
|
|
num_workers=num_jobs,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
cut_set.to_file(output_dir / f"cuts_{partition}.jsonl.gz")
|
|
else:
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
batch_duration=2000,
|
|
num_workers=num_jobs,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
cut_set.to_file(output_dir / f"cuts_{partition}.jsonl.gz")
|
|
|
|
if __name__ == "__main__":
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
args = get_args()
|
|
|
|
compute_fbank_gpu(args)
|