icefall/egs/emilia/TTS/local/extract_cosyvoice2_token.py
2025-03-03 05:40:38 +00:00

201 lines
6.0 KiB
Python

# Copyright (c) 2024 Tsinghua Univ. (authors: Xingchen Song)
# 2025 (authors: Yuekai Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Example Usage
torchrun --nproc_per_node=8 --nnodes=1 \
--rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
local/extract_cosyvoice2_token.py --data_dir $data_dir \
--jsonl_file $jsonl_file_basename \
--device "cuda" \
--output_dir $output_dir \
--batch_size 32 \
--num_workers 2 \
--model "speech_tokenizer_v2_25hz"
"""
import argparse
import json
import os
from pathlib import Path
import s3tokenizer
import torch
import torch.distributed as dist
from lhotse.serialization import load_jsonl
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from tqdm import tqdm
class AudioDataset(Dataset):
def __init__(self, data_dir, jsonl_file):
self.data = []
# convert data_dir to Path object
self.data_dir = Path(data_dir)
# jsonl_files = self.data_dir.glob("*.jsonl")
jsonl_files = [self.data_dir / jsonl_file]
for jsonl_file in jsonl_files:
for item in tqdm(
# Note: People's Speech manifest.json is really a JSONL.
load_jsonl(jsonl_file),
desc=f"Processing {jsonl_file}",
):
self.data.append(item)
break
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
file_path = self.data_dir / self.data[idx]["wav"]
audio = s3tokenizer.load_audio(file_path)
if audio.shape[0] / 16000 > 30:
print(
f"do not support extract speech token for audio longer than 30s, file_path: {file_path}" # noqa
)
mel = torch.zeros(128, 0)
else:
mel = s3tokenizer.log_mel_spectrogram(audio)
return self.data[idx], mel
def collate_fn(batch):
keys = [item[0] for item in batch]
mels = [item[1] for item in batch]
mels, mels_lens = s3tokenizer.padding(mels)
return keys, mels, mels_lens
def init_distributed():
world_size = int(os.environ.get("WORLD_SIZE", 1))
local_rank = int(os.environ.get("LOCAL_RANK", 0))
rank = int(os.environ.get("RANK", 0))
print(
"Inference on multiple gpus, this gpu {}".format(local_rank)
+ ", rank {}, world_size {}".format(rank, world_size)
)
torch.cuda.set_device(local_rank)
dist.init_process_group("nccl")
return world_size, local_rank, rank
def get_args():
parser = argparse.ArgumentParser(description="extract speech code")
parser.add_argument(
"--model",
required=True,
type=str,
choices=[
"speech_tokenizer_v1",
"speech_tokenizer_v1_25hz",
"speech_tokenizer_v2_25hz",
],
help="model version",
)
parser.add_argument(
"--data_dir",
required=True,
type=str,
help="each line contains `wav_name wav_path`",
)
parser.add_argument(
"--jsonl_file",
required=True,
type=str,
help="each line contains `wav_name wav_path`",
)
parser.add_argument(
"--device",
required=True,
type=str,
choices=["cuda", "cpu"],
help="device for inference",
)
parser.add_argument(
"--output_dir", required=True, type=str, help="dir to save result"
)
parser.add_argument(
"--batch_size",
required=True,
type=int,
help="batch size (per-device) for inference",
)
parser.add_argument(
"--num_workers", type=int, default=4, help="workers for dataloader"
)
parser.add_argument(
"--prefetch", type=int, default=5, help="prefetch for dataloader"
)
args = parser.parse_args()
return args
def main():
args = get_args()
os.makedirs(args.output_dir, exist_ok=True)
if args.device == "cuda":
assert torch.cuda.is_available()
world_size, local_rank, rank = init_distributed()
else:
world_size, local_rank, rank = 1, 0, 0
device = torch.device(args.device)
model = s3tokenizer.load_model(args.model).to(device)
dataset = AudioDataset(args.data_dir, args.jsonl_file)
if args.device == "cuda":
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank]
)
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
else:
sampler = None
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
sampler=sampler,
shuffle=False,
num_workers=args.num_workers,
prefetch_factor=args.prefetch,
collate_fn=collate_fn,
)
total_steps = len(dataset)
if rank == 0:
progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs")
writer = open(f"{args.output_dir}/part_{rank + 1}_of_{world_size}", "w")
for keys, mels, mels_lens in dataloader:
codes, codes_lens = model(mels.to(device), mels_lens.to(device))
for i, k in enumerate(keys):
code = codes[i, : codes_lens[i].item()].tolist()
k["code"] = code
writer.write(json.dumps(k, ensure_ascii=False) + "\n")
if rank == 0:
progress_bar.update(world_size * len(keys))
if rank == 0:
progress_bar.close()
writer.close()
if args.device == "cuda":
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
main()