mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 02:22:17 +00:00
201 lines
6.0 KiB
Python
201 lines
6.0 KiB
Python
# Copyright (c) 2024 Tsinghua Univ. (authors: Xingchen Song)
|
|
# 2025 (authors: Yuekai Zhang)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Example Usage
|
|
torchrun --nproc_per_node=8 --nnodes=1 \
|
|
--rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
|
local/extract_cosyvoice2_token.py --data_dir $data_dir \
|
|
--jsonl_file $jsonl_file_basename \
|
|
--device "cuda" \
|
|
--output_dir $output_dir \
|
|
--batch_size 32 \
|
|
--num_workers 2 \
|
|
--model "speech_tokenizer_v2_25hz"
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import s3tokenizer
|
|
import torch
|
|
import torch.distributed as dist
|
|
from lhotse.serialization import load_jsonl
|
|
from torch.utils.data import DataLoader, Dataset, DistributedSampler
|
|
from tqdm import tqdm
|
|
|
|
|
|
class AudioDataset(Dataset):
|
|
def __init__(self, data_dir, jsonl_file):
|
|
self.data = []
|
|
# convert data_dir to Path object
|
|
self.data_dir = Path(data_dir)
|
|
# jsonl_files = self.data_dir.glob("*.jsonl")
|
|
jsonl_files = [self.data_dir / jsonl_file]
|
|
for jsonl_file in jsonl_files:
|
|
for item in tqdm(
|
|
# Note: People's Speech manifest.json is really a JSONL.
|
|
load_jsonl(jsonl_file),
|
|
desc=f"Processing {jsonl_file}",
|
|
):
|
|
self.data.append(item)
|
|
break
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def __getitem__(self, idx):
|
|
file_path = self.data_dir / self.data[idx]["wav"]
|
|
audio = s3tokenizer.load_audio(file_path)
|
|
if audio.shape[0] / 16000 > 30:
|
|
print(
|
|
f"do not support extract speech token for audio longer than 30s, file_path: {file_path}" # noqa
|
|
)
|
|
mel = torch.zeros(128, 0)
|
|
else:
|
|
mel = s3tokenizer.log_mel_spectrogram(audio)
|
|
return self.data[idx], mel
|
|
|
|
|
|
def collate_fn(batch):
|
|
keys = [item[0] for item in batch]
|
|
mels = [item[1] for item in batch]
|
|
mels, mels_lens = s3tokenizer.padding(mels)
|
|
return keys, mels, mels_lens
|
|
|
|
|
|
def init_distributed():
|
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
|
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
|
rank = int(os.environ.get("RANK", 0))
|
|
print(
|
|
"Inference on multiple gpus, this gpu {}".format(local_rank)
|
|
+ ", rank {}, world_size {}".format(rank, world_size)
|
|
)
|
|
torch.cuda.set_device(local_rank)
|
|
dist.init_process_group("nccl")
|
|
return world_size, local_rank, rank
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(description="extract speech code")
|
|
parser.add_argument(
|
|
"--model",
|
|
required=True,
|
|
type=str,
|
|
choices=[
|
|
"speech_tokenizer_v1",
|
|
"speech_tokenizer_v1_25hz",
|
|
"speech_tokenizer_v2_25hz",
|
|
],
|
|
help="model version",
|
|
)
|
|
parser.add_argument(
|
|
"--data_dir",
|
|
required=True,
|
|
type=str,
|
|
help="each line contains `wav_name wav_path`",
|
|
)
|
|
parser.add_argument(
|
|
"--jsonl_file",
|
|
required=True,
|
|
type=str,
|
|
help="each line contains `wav_name wav_path`",
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
required=True,
|
|
type=str,
|
|
choices=["cuda", "cpu"],
|
|
help="device for inference",
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir", required=True, type=str, help="dir to save result"
|
|
)
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
required=True,
|
|
type=int,
|
|
help="batch size (per-device) for inference",
|
|
)
|
|
parser.add_argument(
|
|
"--num_workers", type=int, default=4, help="workers for dataloader"
|
|
)
|
|
parser.add_argument(
|
|
"--prefetch", type=int, default=5, help="prefetch for dataloader"
|
|
)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.device == "cuda":
|
|
assert torch.cuda.is_available()
|
|
world_size, local_rank, rank = init_distributed()
|
|
else:
|
|
world_size, local_rank, rank = 1, 0, 0
|
|
|
|
device = torch.device(args.device)
|
|
model = s3tokenizer.load_model(args.model).to(device)
|
|
dataset = AudioDataset(args.data_dir, args.jsonl_file)
|
|
|
|
if args.device == "cuda":
|
|
model = torch.nn.parallel.DistributedDataParallel(
|
|
model, device_ids=[local_rank]
|
|
)
|
|
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
|
|
else:
|
|
sampler = None
|
|
|
|
dataloader = DataLoader(
|
|
dataset,
|
|
batch_size=args.batch_size,
|
|
sampler=sampler,
|
|
shuffle=False,
|
|
num_workers=args.num_workers,
|
|
prefetch_factor=args.prefetch,
|
|
collate_fn=collate_fn,
|
|
)
|
|
|
|
total_steps = len(dataset)
|
|
|
|
if rank == 0:
|
|
progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs")
|
|
|
|
writer = open(f"{args.output_dir}/part_{rank + 1}_of_{world_size}", "w")
|
|
for keys, mels, mels_lens in dataloader:
|
|
codes, codes_lens = model(mels.to(device), mels_lens.to(device))
|
|
for i, k in enumerate(keys):
|
|
code = codes[i, : codes_lens[i].item()].tolist()
|
|
k["code"] = code
|
|
writer.write(json.dumps(k, ensure_ascii=False) + "\n")
|
|
if rank == 0:
|
|
progress_bar.update(world_size * len(keys))
|
|
|
|
if rank == 0:
|
|
progress_bar.close()
|
|
writer.close()
|
|
if args.device == "cuda":
|
|
dist.barrier()
|
|
dist.destroy_process_group()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|