Daniel Povey 610b2270aa Bug fixes
2023-05-16 23:08:13 +08:00

122 lines
4.2 KiB
Python

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn, Tensor
from subformer import Subformer
from scaling import Balancer
class TextEmbedder(nn.Module):
def __init__(self,
vocab_size: int,
embedding_dim: int):
super().__init__()
self.embed = nn.Embedding(
num_embeddings=vocab_size,
embedding_dim=embedding_dim)
self.conv1 = nn.Conv1d(embedding_dim,
embedding_dim,
groups=embedding_dim,
kernel_size=2)
self.balancer1 = Balancer(embedding_dim,
channel_dim=1,
min_positive=0.1,
min_abs=1.0,
max_abs=2.0)
self.activation1 = nn.ReLU()
self.conv2 = nn.Conv1d(embedding_dim,
embedding_dim,
kernel_size=2)
self.balancer2 = Balancer(embedding_dim,
channel_dim=1,
min_positive=0.1,
min_abs=1.0,
max_abs=2.0)
self.activation2 = nn.ReLU()
self.out_proj = nn.Linear(embedding_dim,
embedding_dim,
bias=False)
def forward(self,
text: Tensor) -> Tensor:
"""
Args:
text: Tensor of shape (seq_len, batch_size), containing integer indexes
0 <= text < vocab_size.
Returns:
Tensor of shape (seq_len, batch_size, embedding_dim)
"""
x = self.embed(text) # (seq_len, batch_size, embedding_dim)
x = x.permute(1, 2, 0) # N,C,H, i.e. (batch_size, embedding_dim, seq_len)
x = torch.nn.functional.pad(x, (1, 0))
x = self.conv1(x)
x = self.balancer1(x) # make sure no channel has all zeros.
x = self.activation1(x)
x = torch.nn.functional.pad(x, (1, 0))
x = self.conv2(x)
x = self.balancer2(x)
x = self.activation2(x)
x = x.permute(2, 0, 1) # (seq_len, batch_size, embedding_dim)
x = self.out_proj(x)
return x
class SubformerLM(nn.Module):
def __init__(self,
encoder_embed: nn.Module,
encoder: Subformer,
decoder: nn.Module):
super().__init__()
self.encoder_embed = encoder_embed
self.encoder = encoder # does subsampling
self.decoder = decoder
def forward(self,
labels: Tensor):
"""
Compute array of log-probs
Args:
labels: a Tensor containing the labels (in the range 0..num_symbols-1), of shape (batch_size, seq_len).
Returns:
a Tensor containing the log-probs for each label, of shape (batch_size, seq_len).
"""
(batch_size, seq_len) = labels.shape
chunk_size = 1
labels_shifted = labels.t() # (time, batch)
labels_shifted = torch.cat((torch.zeros_like(labels_shifted[:1]),
labels_shifted[:-1]),
dim=0)
x = self.encoder_embed(labels_shifted)
x_lens = torch.full((batch_size,), seq_len,
dtype=torch.long, device=labels.device)
# x_lens is after subsampling. Actually we don't need it.
(x, x_lens) = self.encoder(x, x_lens)
logprobs = self.decoder(labels, x)
return logprobs