mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
117 lines
3.7 KiB
Python
117 lines
3.7 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This script is to load the visual data in GRID.
|
|
The class dataset_visual makes each visual batch data have the same shape.
|
|
"""
|
|
import cv2
|
|
import os
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
from .cvtransforms import HorizontalFlip, ColorNormalize
|
|
|
|
|
|
class dataset_visual(Dataset):
|
|
def __init__(
|
|
self,
|
|
video_path: str,
|
|
anno_path: str,
|
|
file_list: str,
|
|
vid_padding: int,
|
|
phase: str,
|
|
):
|
|
"""
|
|
Args:
|
|
video_path:
|
|
The dir path of the visual data.
|
|
anno_path:
|
|
The dir path of the texts data.
|
|
file_list:
|
|
The file which listing all samples for training or testing.
|
|
vid_padding:
|
|
The padding for each visual sample.
|
|
phase:
|
|
"train" or "test".
|
|
"""
|
|
self.anno_path = anno_path
|
|
self.vid_padding = vid_padding
|
|
self.phase = phase
|
|
with open(file_list, "r") as f:
|
|
self.videos = [
|
|
os.path.join(video_path, line.strip()) for line in f.readlines()
|
|
]
|
|
|
|
self.data = []
|
|
for vid in self.videos:
|
|
items = vid.split(os.path.sep)
|
|
aud = (
|
|
vid.replace("lip", "audio_25k").replace("/video/mpg_6000", "")
|
|
+ ".wav"
|
|
)
|
|
self.data.append((vid, aud, items[-4], items[-1]))
|
|
|
|
def __getitem__(self, idx):
|
|
(vid, aud, spk, name) = self.data[idx]
|
|
vid = self._load_vid(vid)
|
|
anno = self._load_anno(
|
|
os.path.join(self.anno_path, spk, "align", name + ".align")
|
|
)
|
|
|
|
if self.phase == "train":
|
|
vid = HorizontalFlip(vid)
|
|
vid = ColorNormalize(vid)
|
|
|
|
vid = self._padding(vid, self.vid_padding)
|
|
|
|
return {
|
|
"vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)),
|
|
"txt": anno.upper(),
|
|
}
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def _load_vid(self, p):
|
|
files = os.listdir(p)
|
|
files = list(filter(lambda file: file.find(".jpg") != -1, files))
|
|
files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
|
|
array = [cv2.imread(os.path.join(p, file)) for file in files]
|
|
array = list(filter(lambda im: im is not None, array))
|
|
array = [
|
|
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
|
|
for im in array
|
|
]
|
|
array = np.stack(array, axis=0).astype(np.float32)
|
|
return array
|
|
|
|
def _load_anno(self, name):
|
|
with open(name, "r") as f:
|
|
lines = [line.strip().split(" ") for line in f.readlines()]
|
|
txt = [line[2] for line in lines]
|
|
txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt))
|
|
txt = " ".join(txt)
|
|
return txt
|
|
|
|
def _padding(self, array, length):
|
|
array = [array[_] for _ in range(array.shape[0])]
|
|
size = array[0].shape
|
|
for i in range(length - len(array)):
|
|
array.append(np.zeros(size))
|
|
return np.stack(array, axis=0)
|