2021-12-30 10:24:47 +08:00

273 lines
7.9 KiB
Python

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import cv2
import logging
import numpy as np
import os
import k2
import kaldifeat
import torch
import torchaudio
from model import TdnnLstm
from icefall.decode import (
get_lattice,
one_best_decoding,
rescore_with_whole_lattice,
)
from icefall.utils import AttributeDict, get_texts
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--words-file",
type=str,
required=True,
help="Path to words.txt",
)
parser.add_argument(
"--HLG", type=str, required=True, help="Path to HLG.pt."
)
parser.add_argument(
"--method",
type=str,
default="1best",
help="""Decoding method.
Possible values are:
(1) 1best - Use the best path as decoding output. Only
the transformer encoder output is used for decoding.
We call it HLG decoding.
(2) whole-lattice-rescoring - Use an LM to rescore the
decoding lattice and then use 1best to decode the
rescored lattice.
We call it HLG decoding + n-gram LM rescoring.
""",
)
parser.add_argument(
"--G",
type=str,
help="""An LM for rescoring.
Used only when method is
whole-lattice-rescoring.
It's usually a 4-gram LM.
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.1,
help="""
Used only when method is whole-lattice-rescoring.
It specifies the scale for n-gram LM scores.
(Note: You need to tune it on a dataset.)
""",
)
parser.add_argument(
"--lipframes-dirs",
type=str,
nargs="+",
help="The input visual file(s) to transcribe. "
"Supported formats are those supported by cv2.imread(). "
"The frames sample rate is 25fps.",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"num_classes": 28,
"search_beam": 20,
"output_beam": 5,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
}
)
return params
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = TdnnLstm(num_features=80, num_classes=28, subsampling_factor=3)
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"])
model.to(device)
model.eval()
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
HLG.lm_scores = HLG.scores.clone()
if params.method == "whole-lattice-rescoring":
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = G.to(device)
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
G.lm_scores = G.scores.clone()
logging.info("Loading lip roi frames and audio wav files")
aud = []
vid = []
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
for sample_dir in params.lipframes_dirs:
wave, sr = torchaudio.load(
sample_dir.replace("lip", "audio_25k").replace(
"video/mpg_6000/", ""
)
+ ".wav"
)
wave = wave[0]
aud.append(fbank(wave))
files = os.listdir(sample_dir)
files = list(filter(lambda file: file.find(".jpg") != -1, files))
files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
array = [cv2.imread(os.path.join(sample_dir, file)) for file in files]
array = list(filter(lambda im: im is not None, array))
array = [
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
for im in array
]
array = np.stack(array, axis=0).astype(np.float32)
vid.append(array)
L, H, W, C = vid[0].shape
# vid_padding = 75
# aud_padding = 480
features_v = torch.zeros(len(vid), 75, H, W, C).to(device)
for i in range(len(vid)):
length = vid[i].shape[0]
features_v[i][:length] = torch.FloatTensor(vid[i]).to(device)
features_a = torch.zeros(len(aud), 450, 80).to(device)
for i in range(len(aud)):
length = aud[i].shape[0]
features_a[i][:length] = torch.FloatTensor(aud[i]).to(device)
logging.info("Decoding started")
with torch.no_grad():
nnet_output = model(
features_v.permute(0, 4, 1, 2, 3) / 255.0,
features_a.permute(0, 2, 1),
)
# nnet_output is (N, T, C)
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
dtype=torch.int32,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
)
if params.method == "1best":
logging.info("Use HLG decoding")
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
elif params.method == "whole-lattice-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=[params.ngram_lm_scale],
)
best_path = next(iter(best_path_dict.values()))
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
s = "\n"
for filename, hyp in zip(params.lipframes_dirs, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()