mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* init * isort formatted * minor updates * Create shared * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare.sh * updated * Update train.py * Update train.py * Update tts_datamodule.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * fixed formatting issue * Update infer.py * removed redundant files * Create monotonic_align * removed redundant files * created symlinks * Update prepare.sh * minor adjustments * Create requirements_tts.txt * Update requirements_tts.txt added version constraints * Update infer.py * Update infer.py * Update infer.py * updated docs * Update export-onnx.py * Update export-onnx.py * Update test_onnx.py * updated requirements.txt * Update test_onnx.py * Update test_onnx.py * docs updated * docs fixed * minor updates
139 lines
4.1 KiB
Python
Executable File
139 lines
4.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2023 Xiaomi Corporation (Author: Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This script is used to test the exported onnx model by vits/export-onnx.py
|
|
|
|
Use the onnx model to generate a wav:
|
|
./vits/test_onnx.py \
|
|
--model-filename vits/exp/vits-epoch-1000.onnx \
|
|
--tokens data/tokens.txt
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import onnxruntime as ort
|
|
import torch
|
|
import torchaudio
|
|
from tokenizer import Tokenizer
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the onnx model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--speakers",
|
|
type=Path,
|
|
default=Path("data/speakers.txt"),
|
|
help="Path to speakers.txt file.",
|
|
)
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
default="data/tokens.txt",
|
|
help="""Path to vocabulary.""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
class OnnxModel:
|
|
def __init__(self, model_filename: str):
|
|
session_opts = ort.SessionOptions()
|
|
session_opts.inter_op_num_threads = 1
|
|
session_opts.intra_op_num_threads = 4
|
|
|
|
self.session_opts = session_opts
|
|
|
|
self.model = ort.InferenceSession(
|
|
model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
logging.info(f"{self.model.get_modelmeta().custom_metadata_map}")
|
|
|
|
def __call__(
|
|
self, tokens: torch.Tensor, tokens_lens: torch.Tensor, speaker: torch.Tensor
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
tokens:
|
|
A 1-D tensor of shape (1, T)
|
|
Returns:
|
|
A tensor of shape (1, T')
|
|
"""
|
|
noise_scale = torch.tensor([0.667], dtype=torch.float32)
|
|
noise_scale_dur = torch.tensor([0.8], dtype=torch.float32)
|
|
alpha = torch.tensor([1.0], dtype=torch.float32)
|
|
|
|
out = self.model.run(
|
|
[
|
|
self.model.get_outputs()[0].name,
|
|
],
|
|
{
|
|
self.model.get_inputs()[0].name: tokens.numpy(),
|
|
self.model.get_inputs()[1].name: tokens_lens.numpy(),
|
|
self.model.get_inputs()[2].name: noise_scale.numpy(),
|
|
self.model.get_inputs()[3].name: noise_scale_dur.numpy(),
|
|
self.model.get_inputs()[4].name: speaker.numpy(),
|
|
self.model.get_inputs()[5].name: alpha.numpy(),
|
|
},
|
|
)[0]
|
|
return torch.from_numpy(out)
|
|
|
|
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
|
|
tokenizer = Tokenizer(args.tokens)
|
|
|
|
with open(args.speakers) as f:
|
|
speaker_map = {line.strip(): i for i, line in enumerate(f)}
|
|
args.num_spks = len(speaker_map)
|
|
|
|
logging.info("About to create onnx model")
|
|
model = OnnxModel(args.model_filename)
|
|
|
|
text = "I went there to see the land, the people and how their system works, end quote."
|
|
tokens = tokenizer.texts_to_token_ids([text])
|
|
tokens = torch.tensor(tokens) # (1, T)
|
|
tokens_lens = torch.tensor([tokens.shape[1]], dtype=torch.int64) # (1, T)
|
|
speaker = torch.tensor([1], dtype=torch.int64) # (1, )
|
|
audio = model(tokens, tokens_lens, speaker) # (1, T')
|
|
|
|
torchaudio.save(str("test_onnx.wav"), audio, sample_rate=22050)
|
|
logging.info("Saved to test_onnx.wav")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|