mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* init * isort formatted * minor updates * Create shared * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare.sh * updated * Update train.py * Update train.py * Update tts_datamodule.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * fixed formatting issue * Update infer.py * removed redundant files * Create monotonic_align * removed redundant files * created symlinks * Update prepare.sh * minor adjustments * Create requirements_tts.txt * Update requirements_tts.txt added version constraints * Update infer.py * Update infer.py * Update infer.py * updated docs * Update export-onnx.py * Update export-onnx.py * Update test_onnx.py * updated requirements.txt * Update test_onnx.py * Update test_onnx.py * docs updated * docs fixed * minor updates
326 lines
11 KiB
Python
326 lines
11 KiB
Python
# Copyright 2021 Piotr Żelasko
|
|
# Copyright 2022-2023 Xiaomi Corporation (Authors: Mingshuang Luo,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Optional
|
|
|
|
import torch
|
|
from lhotse import CutSet, Spectrogram, SpectrogramConfig, load_manifest_lazy
|
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
CutConcatenate,
|
|
CutMix,
|
|
DynamicBucketingSampler,
|
|
PrecomputedFeatures,
|
|
SimpleCutSampler,
|
|
SpecAugment,
|
|
SpeechSynthesisDataset,
|
|
)
|
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
|
AudioSamples,
|
|
OnTheFlyFeatures,
|
|
)
|
|
from lhotse.utils import fix_random_seed
|
|
from torch.utils.data import DataLoader
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
class _SeedWorkers:
|
|
def __init__(self, seed: int):
|
|
self.seed = seed
|
|
|
|
def __call__(self, worker_id: int):
|
|
fix_random_seed(self.seed + worker_id)
|
|
|
|
|
|
class LJSpeechTtsDataModule:
|
|
"""
|
|
DataModule for tts experiments.
|
|
It assumes there is always one train and valid dataloader,
|
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
and test-other).
|
|
|
|
It contains all the common data pipeline modules used in ASR
|
|
experiments, e.g.:
|
|
- dynamic batch size,
|
|
- bucketing samplers,
|
|
- cut concatenation,
|
|
- on-the-fly feature extraction
|
|
|
|
This class should be derived for specific corpora used in ASR tasks.
|
|
"""
|
|
|
|
def __init__(self, args: argparse.Namespace):
|
|
self.args = args
|
|
|
|
@classmethod
|
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(
|
|
title="TTS data related options",
|
|
description="These options are used for the preparation of "
|
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
"effective batch sizes, sampling strategies, applied data "
|
|
"augmentations, etc.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--manifest-dir",
|
|
type=Path,
|
|
default=Path("data/spectrogram"),
|
|
help="Path to directory with train/valid/test cuts.",
|
|
)
|
|
group.add_argument(
|
|
"--max-duration",
|
|
type=int,
|
|
default=200.0,
|
|
help="Maximum pooled recordings duration (seconds) in a "
|
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
)
|
|
group.add_argument(
|
|
"--bucketing-sampler",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, the batches will come from buckets of "
|
|
"similar duration (saves padding frames).",
|
|
)
|
|
group.add_argument(
|
|
"--num-buckets",
|
|
type=int,
|
|
default=30,
|
|
help="The number of buckets for the DynamicBucketingSampler"
|
|
"(you might want to increase it for larger datasets).",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--on-the-fly-feats",
|
|
type=str2bool,
|
|
default=False,
|
|
help="When enabled, use on-the-fly cut mixing and feature "
|
|
"extraction. Will drop existing precomputed feature manifests "
|
|
"if available.",
|
|
)
|
|
group.add_argument(
|
|
"--shuffle",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled (=default), the examples will be "
|
|
"shuffled for each epoch.",
|
|
)
|
|
group.add_argument(
|
|
"--drop-last",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to drop last batch. Used by sampler.",
|
|
)
|
|
group.add_argument(
|
|
"--return-cuts",
|
|
type=str2bool,
|
|
default=False,
|
|
help="When enabled, each batch will have the "
|
|
"field: batch['cut'] with the cuts that "
|
|
"were used to construct it.",
|
|
)
|
|
group.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=2,
|
|
help="The number of training dataloader workers that "
|
|
"collect the batches.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--input-strategy",
|
|
type=str,
|
|
default="PrecomputedFeatures",
|
|
help="AudioSamples or PrecomputedFeatures",
|
|
)
|
|
|
|
def train_dataloaders(
|
|
self,
|
|
cuts_train: CutSet,
|
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
|
) -> DataLoader:
|
|
"""
|
|
Args:
|
|
cuts_train:
|
|
CutSet for training.
|
|
sampler_state_dict:
|
|
The state dict for the training sampler.
|
|
"""
|
|
logging.info("About to create train dataset")
|
|
train = SpeechSynthesisDataset(
|
|
return_text=False,
|
|
return_tokens=True,
|
|
feature_input_strategy=eval(self.args.input_strategy)(),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
|
|
if self.args.on_the_fly_feats:
|
|
sampling_rate = 22050
|
|
config = SpectrogramConfig(
|
|
sampling_rate=sampling_rate,
|
|
frame_length=1024 / sampling_rate, # (in second),
|
|
frame_shift=256 / sampling_rate, # (in second)
|
|
use_fft_mag=True,
|
|
)
|
|
train = SpeechSynthesisDataset(
|
|
return_text=False,
|
|
return_tokens=True,
|
|
feature_input_strategy=OnTheFlyFeatures(Spectrogram(config)),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
|
|
if self.args.bucketing_sampler:
|
|
logging.info("Using DynamicBucketingSampler.")
|
|
train_sampler = DynamicBucketingSampler(
|
|
cuts_train,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=self.args.shuffle,
|
|
num_buckets=self.args.num_buckets,
|
|
drop_last=self.args.drop_last,
|
|
)
|
|
else:
|
|
logging.info("Using SimpleCutSampler.")
|
|
train_sampler = SimpleCutSampler(
|
|
cuts_train,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=self.args.shuffle,
|
|
)
|
|
logging.info("About to create train dataloader")
|
|
|
|
if sampler_state_dict is not None:
|
|
logging.info("Loading sampler state dict")
|
|
train_sampler.load_state_dict(sampler_state_dict)
|
|
|
|
# 'seed' is derived from the current random state, which will have
|
|
# previously been set in the main process.
|
|
seed = torch.randint(0, 100000, ()).item()
|
|
worker_init_fn = _SeedWorkers(seed)
|
|
|
|
train_dl = DataLoader(
|
|
train,
|
|
sampler=train_sampler,
|
|
batch_size=None,
|
|
num_workers=self.args.num_workers,
|
|
persistent_workers=False,
|
|
worker_init_fn=worker_init_fn,
|
|
)
|
|
|
|
return train_dl
|
|
|
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
|
logging.info("About to create dev dataset")
|
|
if self.args.on_the_fly_feats:
|
|
sampling_rate = 22050
|
|
config = SpectrogramConfig(
|
|
sampling_rate=sampling_rate,
|
|
frame_length=1024 / sampling_rate, # (in second),
|
|
frame_shift=256 / sampling_rate, # (in second)
|
|
use_fft_mag=True,
|
|
)
|
|
validate = SpeechSynthesisDataset(
|
|
return_text=False,
|
|
return_tokens=True,
|
|
feature_input_strategy=OnTheFlyFeatures(Spectrogram(config)),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
else:
|
|
validate = SpeechSynthesisDataset(
|
|
return_text=False,
|
|
return_tokens=True,
|
|
feature_input_strategy=eval(self.args.input_strategy)(),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
valid_sampler = DynamicBucketingSampler(
|
|
cuts_valid,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=False,
|
|
)
|
|
logging.info("About to create valid dataloader")
|
|
valid_dl = DataLoader(
|
|
validate,
|
|
sampler=valid_sampler,
|
|
batch_size=None,
|
|
num_workers=2,
|
|
persistent_workers=False,
|
|
)
|
|
|
|
return valid_dl
|
|
|
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
logging.info("About to create test dataset")
|
|
if self.args.on_the_fly_feats:
|
|
sampling_rate = 22050
|
|
config = SpectrogramConfig(
|
|
sampling_rate=sampling_rate,
|
|
frame_length=1024 / sampling_rate, # (in second),
|
|
frame_shift=256 / sampling_rate, # (in second)
|
|
use_fft_mag=True,
|
|
)
|
|
test = SpeechSynthesisDataset(
|
|
return_text=False,
|
|
return_tokens=True,
|
|
feature_input_strategy=OnTheFlyFeatures(Spectrogram(config)),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
else:
|
|
test = SpeechSynthesisDataset(
|
|
return_text=False,
|
|
return_tokens=True,
|
|
feature_input_strategy=eval(self.args.input_strategy)(),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
test_sampler = DynamicBucketingSampler(
|
|
cuts,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=False,
|
|
)
|
|
logging.info("About to create test dataloader")
|
|
test_dl = DataLoader(
|
|
test,
|
|
batch_size=None,
|
|
sampler=test_sampler,
|
|
num_workers=self.args.num_workers,
|
|
)
|
|
return test_dl
|
|
|
|
@lru_cache()
|
|
def train_cuts(self) -> CutSet:
|
|
logging.info("About to get train cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "ljspeech_cuts_train.jsonl.gz"
|
|
)
|
|
|
|
@lru_cache()
|
|
def valid_cuts(self) -> CutSet:
|
|
logging.info("About to get validation cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "ljspeech_cuts_valid.jsonl.gz"
|
|
)
|
|
|
|
@lru_cache()
|
|
def test_cuts(self) -> CutSet:
|
|
logging.info("About to get test cuts")
|
|
return load_manifest_lazy(
|
|
self.args.manifest_dir / "ljspeech_cuts_test.jsonl.gz"
|
|
)
|