mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* init * isort formatted * minor updates * Create shared * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare.sh * updated * Update train.py * Update train.py * Update tts_datamodule.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * fixed formatting issue * Update infer.py * removed redundant files * Create monotonic_align * removed redundant files * created symlinks * Update prepare.sh * minor adjustments * Create requirements_tts.txt * Update requirements_tts.txt added version constraints * Update infer.py * Update infer.py * Update infer.py * updated docs * Update export-onnx.py * Update export-onnx.py * Update test_onnx.py * updated requirements.txt * Update test_onnx.py * Update test_onnx.py * docs updated * docs fixed * minor updates
118 lines
3.9 KiB
Python
118 lines
3.9 KiB
Python
# from https://github.com/espnet/espnet/blob/master/espnet2/gan_tts/vits/posterior_encoder.py
|
|
|
|
# Copyright 2021 Tomoki Hayashi
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Posterior encoder module in VITS.
|
|
|
|
This code is based on https://github.com/jaywalnut310/vits.
|
|
|
|
"""
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from wavenet import Conv1d, WaveNet
|
|
|
|
from icefall.utils import make_pad_mask
|
|
|
|
|
|
class PosteriorEncoder(torch.nn.Module):
|
|
"""Posterior encoder module in VITS.
|
|
|
|
This is a module of posterior encoder described in `Conditional Variational
|
|
Autoencoder with Adversarial Learning for End-to-End Text-to-Speech`_.
|
|
|
|
.. _`Conditional Variational Autoencoder with Adversarial Learning for End-to-End
|
|
Text-to-Speech`: https://arxiv.org/abs/2006.04558
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int = 513,
|
|
out_channels: int = 192,
|
|
hidden_channels: int = 192,
|
|
kernel_size: int = 5,
|
|
layers: int = 16,
|
|
stacks: int = 1,
|
|
base_dilation: int = 1,
|
|
global_channels: int = -1,
|
|
dropout_rate: float = 0.0,
|
|
bias: bool = True,
|
|
use_weight_norm: bool = True,
|
|
):
|
|
"""Initilialize PosteriorEncoder module.
|
|
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
out_channels (int): Number of output channels.
|
|
hidden_channels (int): Number of hidden channels.
|
|
kernel_size (int): Kernel size in WaveNet.
|
|
layers (int): Number of layers of WaveNet.
|
|
stacks (int): Number of repeat stacking of WaveNet.
|
|
base_dilation (int): Base dilation factor.
|
|
global_channels (int): Number of global conditioning channels.
|
|
dropout_rate (float): Dropout rate.
|
|
bias (bool): Whether to use bias parameters in conv.
|
|
use_weight_norm (bool): Whether to apply weight norm.
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
# define modules
|
|
self.input_conv = Conv1d(in_channels, hidden_channels, 1)
|
|
self.encoder = WaveNet(
|
|
in_channels=-1,
|
|
out_channels=-1,
|
|
kernel_size=kernel_size,
|
|
layers=layers,
|
|
stacks=stacks,
|
|
base_dilation=base_dilation,
|
|
residual_channels=hidden_channels,
|
|
aux_channels=-1,
|
|
gate_channels=hidden_channels * 2,
|
|
skip_channels=hidden_channels,
|
|
global_channels=global_channels,
|
|
dropout_rate=dropout_rate,
|
|
bias=bias,
|
|
use_weight_norm=use_weight_norm,
|
|
use_first_conv=False,
|
|
use_last_conv=False,
|
|
scale_residual=False,
|
|
scale_skip_connect=True,
|
|
)
|
|
self.proj = Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor (B, in_channels, T_feats).
|
|
x_lengths (Tensor): Length tensor (B,).
|
|
g (Optional[Tensor]): Global conditioning tensor (B, global_channels, 1).
|
|
|
|
Returns:
|
|
Tensor: Encoded hidden representation tensor (B, out_channels, T_feats).
|
|
Tensor: Projected mean tensor (B, out_channels, T_feats).
|
|
Tensor: Projected scale tensor (B, out_channels, T_feats).
|
|
Tensor: Mask tensor for input tensor (B, 1, T_feats).
|
|
|
|
"""
|
|
x_mask = (
|
|
(~make_pad_mask(x_lengths))
|
|
.unsqueeze(1)
|
|
.to(
|
|
dtype=x.dtype,
|
|
device=x.device,
|
|
)
|
|
)
|
|
x = self.input_conv(x) * x_mask
|
|
x = self.encoder(x, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
m, logs = stats.split(stats.size(1) // 2, dim=1)
|
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
|
|
|
return z, m, logs, x_mask
|