mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* init * isort formatted * minor updates * Create shared * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare_tokens_vctk.py * Update prepare.sh * updated * Update train.py * Update train.py * Update tts_datamodule.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * Update train.py * fixed formatting issue * Update infer.py * removed redundant files * Create monotonic_align * removed redundant files * created symlinks * Update prepare.sh * minor adjustments * Create requirements_tts.txt * Update requirements_tts.txt added version constraints * Update infer.py * Update infer.py * Update infer.py * updated docs * Update export-onnx.py * Update export-onnx.py * Update test_onnx.py * updated requirements.txt * Update test_onnx.py * Update test_onnx.py * docs updated * docs fixed * minor updates
531 lines
22 KiB
Python
531 lines
22 KiB
Python
# based on https://github.com/espnet/espnet/blob/master/espnet2/gan_tts/vits/generator.py
|
|
|
|
# Copyright 2021 Tomoki Hayashi
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Generator module in VITS.
|
|
|
|
This code is based on https://github.com/jaywalnut310/vits.
|
|
|
|
"""
|
|
|
|
|
|
import math
|
|
from typing import List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from duration_predictor import StochasticDurationPredictor
|
|
from hifigan import HiFiGANGenerator
|
|
from posterior_encoder import PosteriorEncoder
|
|
from residual_coupling import ResidualAffineCouplingBlock
|
|
from text_encoder import TextEncoder
|
|
from utils import get_random_segments
|
|
|
|
from icefall.utils import make_pad_mask
|
|
|
|
|
|
class VITSGenerator(torch.nn.Module):
|
|
"""Generator module in VITS, `Conditional Variational Autoencoder
|
|
with Adversarial Learning for End-to-End Text-to-Speech`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocabs: int,
|
|
aux_channels: int = 513,
|
|
hidden_channels: int = 192,
|
|
spks: Optional[int] = None,
|
|
langs: Optional[int] = None,
|
|
spk_embed_dim: Optional[int] = None,
|
|
global_channels: int = -1,
|
|
segment_size: int = 32,
|
|
text_encoder_attention_heads: int = 2,
|
|
text_encoder_ffn_expand: int = 4,
|
|
text_encoder_cnn_module_kernel: int = 5,
|
|
text_encoder_blocks: int = 6,
|
|
text_encoder_dropout_rate: float = 0.1,
|
|
decoder_kernel_size: int = 7,
|
|
decoder_channels: int = 512,
|
|
decoder_upsample_scales: List[int] = [8, 8, 2, 2],
|
|
decoder_upsample_kernel_sizes: List[int] = [16, 16, 4, 4],
|
|
decoder_resblock_kernel_sizes: List[int] = [3, 7, 11],
|
|
decoder_resblock_dilations: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
use_weight_norm_in_decoder: bool = True,
|
|
posterior_encoder_kernel_size: int = 5,
|
|
posterior_encoder_layers: int = 16,
|
|
posterior_encoder_stacks: int = 1,
|
|
posterior_encoder_base_dilation: int = 1,
|
|
posterior_encoder_dropout_rate: float = 0.0,
|
|
use_weight_norm_in_posterior_encoder: bool = True,
|
|
flow_flows: int = 4,
|
|
flow_kernel_size: int = 5,
|
|
flow_base_dilation: int = 1,
|
|
flow_layers: int = 4,
|
|
flow_dropout_rate: float = 0.0,
|
|
use_weight_norm_in_flow: bool = True,
|
|
use_only_mean_in_flow: bool = True,
|
|
stochastic_duration_predictor_kernel_size: int = 3,
|
|
stochastic_duration_predictor_dropout_rate: float = 0.5,
|
|
stochastic_duration_predictor_flows: int = 4,
|
|
stochastic_duration_predictor_dds_conv_layers: int = 3,
|
|
):
|
|
"""Initialize VITS generator module.
|
|
|
|
Args:
|
|
vocabs (int): Input vocabulary size.
|
|
aux_channels (int): Number of acoustic feature channels.
|
|
hidden_channels (int): Number of hidden channels.
|
|
spks (Optional[int]): Number of speakers. If set to > 1, assume that the
|
|
sids will be provided as the input and use sid embedding layer.
|
|
langs (Optional[int]): Number of languages. If set to > 1, assume that the
|
|
lids will be provided as the input and use sid embedding layer.
|
|
spk_embed_dim (Optional[int]): Speaker embedding dimension. If set to > 0,
|
|
assume that spembs will be provided as the input.
|
|
global_channels (int): Number of global conditioning channels.
|
|
segment_size (int): Segment size for decoder.
|
|
text_encoder_attention_heads (int): Number of heads in conformer block
|
|
of text encoder.
|
|
text_encoder_ffn_expand (int): Expansion ratio of FFN in conformer block
|
|
of text encoder.
|
|
text_encoder_cnn_module_kernel (int): Convolution kernel size in text encoder.
|
|
text_encoder_blocks (int): Number of conformer blocks in text encoder.
|
|
text_encoder_dropout_rate (float): Dropout rate in conformer block of
|
|
text encoder.
|
|
decoder_kernel_size (int): Decoder kernel size.
|
|
decoder_channels (int): Number of decoder initial channels.
|
|
decoder_upsample_scales (List[int]): List of upsampling scales in decoder.
|
|
decoder_upsample_kernel_sizes (List[int]): List of kernel size for
|
|
upsampling layers in decoder.
|
|
decoder_resblock_kernel_sizes (List[int]): List of kernel size for resblocks
|
|
in decoder.
|
|
decoder_resblock_dilations (List[List[int]]): List of list of dilations for
|
|
resblocks in decoder.
|
|
use_weight_norm_in_decoder (bool): Whether to apply weight normalization in
|
|
decoder.
|
|
posterior_encoder_kernel_size (int): Posterior encoder kernel size.
|
|
posterior_encoder_layers (int): Number of layers of posterior encoder.
|
|
posterior_encoder_stacks (int): Number of stacks of posterior encoder.
|
|
posterior_encoder_base_dilation (int): Base dilation of posterior encoder.
|
|
posterior_encoder_dropout_rate (float): Dropout rate for posterior encoder.
|
|
use_weight_norm_in_posterior_encoder (bool): Whether to apply weight
|
|
normalization in posterior encoder.
|
|
flow_flows (int): Number of flows in flow.
|
|
flow_kernel_size (int): Kernel size in flow.
|
|
flow_base_dilation (int): Base dilation in flow.
|
|
flow_layers (int): Number of layers in flow.
|
|
flow_dropout_rate (float): Dropout rate in flow
|
|
use_weight_norm_in_flow (bool): Whether to apply weight normalization in
|
|
flow.
|
|
use_only_mean_in_flow (bool): Whether to use only mean in flow.
|
|
stochastic_duration_predictor_kernel_size (int): Kernel size in stochastic
|
|
duration predictor.
|
|
stochastic_duration_predictor_dropout_rate (float): Dropout rate in
|
|
stochastic duration predictor.
|
|
stochastic_duration_predictor_flows (int): Number of flows in stochastic
|
|
duration predictor.
|
|
stochastic_duration_predictor_dds_conv_layers (int): Number of DDS conv
|
|
layers in stochastic duration predictor.
|
|
|
|
"""
|
|
super().__init__()
|
|
self.segment_size = segment_size
|
|
self.text_encoder = TextEncoder(
|
|
vocabs=vocabs,
|
|
d_model=hidden_channels,
|
|
num_heads=text_encoder_attention_heads,
|
|
dim_feedforward=hidden_channels * text_encoder_ffn_expand,
|
|
cnn_module_kernel=text_encoder_cnn_module_kernel,
|
|
num_layers=text_encoder_blocks,
|
|
dropout=text_encoder_dropout_rate,
|
|
)
|
|
self.decoder = HiFiGANGenerator(
|
|
in_channels=hidden_channels,
|
|
out_channels=1,
|
|
channels=decoder_channels,
|
|
global_channels=global_channels,
|
|
kernel_size=decoder_kernel_size,
|
|
upsample_scales=decoder_upsample_scales,
|
|
upsample_kernel_sizes=decoder_upsample_kernel_sizes,
|
|
resblock_kernel_sizes=decoder_resblock_kernel_sizes,
|
|
resblock_dilations=decoder_resblock_dilations,
|
|
use_weight_norm=use_weight_norm_in_decoder,
|
|
)
|
|
self.posterior_encoder = PosteriorEncoder(
|
|
in_channels=aux_channels,
|
|
out_channels=hidden_channels,
|
|
hidden_channels=hidden_channels,
|
|
kernel_size=posterior_encoder_kernel_size,
|
|
layers=posterior_encoder_layers,
|
|
stacks=posterior_encoder_stacks,
|
|
base_dilation=posterior_encoder_base_dilation,
|
|
global_channels=global_channels,
|
|
dropout_rate=posterior_encoder_dropout_rate,
|
|
use_weight_norm=use_weight_norm_in_posterior_encoder,
|
|
)
|
|
self.flow = ResidualAffineCouplingBlock(
|
|
in_channels=hidden_channels,
|
|
hidden_channels=hidden_channels,
|
|
flows=flow_flows,
|
|
kernel_size=flow_kernel_size,
|
|
base_dilation=flow_base_dilation,
|
|
layers=flow_layers,
|
|
global_channels=global_channels,
|
|
dropout_rate=flow_dropout_rate,
|
|
use_weight_norm=use_weight_norm_in_flow,
|
|
use_only_mean=use_only_mean_in_flow,
|
|
)
|
|
# TODO(kan-bayashi): Add deterministic version as an option
|
|
self.duration_predictor = StochasticDurationPredictor(
|
|
channels=hidden_channels,
|
|
kernel_size=stochastic_duration_predictor_kernel_size,
|
|
dropout_rate=stochastic_duration_predictor_dropout_rate,
|
|
flows=stochastic_duration_predictor_flows,
|
|
dds_conv_layers=stochastic_duration_predictor_dds_conv_layers,
|
|
global_channels=global_channels,
|
|
)
|
|
|
|
self.upsample_factor = int(np.prod(decoder_upsample_scales))
|
|
self.spks = None
|
|
if spks is not None and spks > 1:
|
|
assert global_channels > 0
|
|
self.spks = spks
|
|
self.global_emb = torch.nn.Embedding(spks, global_channels)
|
|
self.spk_embed_dim = None
|
|
if spk_embed_dim is not None and spk_embed_dim > 0:
|
|
assert global_channels > 0
|
|
self.spk_embed_dim = spk_embed_dim
|
|
self.spemb_proj = torch.nn.Linear(spk_embed_dim, global_channels)
|
|
self.langs = None
|
|
if langs is not None and langs > 1:
|
|
assert global_channels > 0
|
|
self.langs = langs
|
|
self.lang_emb = torch.nn.Embedding(langs, global_channels)
|
|
|
|
# delayed import
|
|
from monotonic_align import maximum_path
|
|
|
|
self.maximum_path = maximum_path
|
|
|
|
def forward(
|
|
self,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
feats: torch.Tensor,
|
|
feats_lengths: torch.Tensor,
|
|
sids: Optional[torch.Tensor] = None,
|
|
spembs: Optional[torch.Tensor] = None,
|
|
lids: Optional[torch.Tensor] = None,
|
|
) -> Tuple[
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
Tuple[
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
],
|
|
]:
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
text (Tensor): Text index tensor (B, T_text).
|
|
text_lengths (Tensor): Text length tensor (B,).
|
|
feats (Tensor): Feature tensor (B, aux_channels, T_feats).
|
|
feats_lengths (Tensor): Feature length tensor (B,).
|
|
sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1).
|
|
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
|
|
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
|
|
|
|
Returns:
|
|
Tensor: Waveform tensor (B, 1, segment_size * upsample_factor).
|
|
Tensor: Duration negative log-likelihood (NLL) tensor (B,).
|
|
Tensor: Monotonic attention weight tensor (B, 1, T_feats, T_text).
|
|
Tensor: Segments start index tensor (B,).
|
|
Tensor: Text mask tensor (B, 1, T_text).
|
|
Tensor: Feature mask tensor (B, 1, T_feats).
|
|
tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
|
|
- Tensor: Posterior encoder hidden representation (B, H, T_feats).
|
|
- Tensor: Flow hidden representation (B, H, T_feats).
|
|
- Tensor: Expanded text encoder projected mean (B, H, T_feats).
|
|
- Tensor: Expanded text encoder projected scale (B, H, T_feats).
|
|
- Tensor: Posterior encoder projected mean (B, H, T_feats).
|
|
- Tensor: Posterior encoder projected scale (B, H, T_feats).
|
|
|
|
"""
|
|
# forward text encoder
|
|
x, m_p, logs_p, x_mask = self.text_encoder(text, text_lengths)
|
|
|
|
# calculate global conditioning
|
|
g = None
|
|
if self.spks is not None:
|
|
# speaker one-hot vector embedding: (B, global_channels, 1)
|
|
g = self.global_emb(sids.view(-1)).unsqueeze(-1)
|
|
if self.spk_embed_dim is not None:
|
|
# pretreined speaker embedding, e.g., X-vector (B, global_channels, 1)
|
|
g_ = self.spemb_proj(F.normalize(spembs)).unsqueeze(-1)
|
|
if g is None:
|
|
g = g_
|
|
else:
|
|
g = g + g_
|
|
if self.langs is not None:
|
|
# language one-hot vector embedding: (B, global_channels, 1)
|
|
g_ = self.lang_emb(lids.view(-1)).unsqueeze(-1)
|
|
if g is None:
|
|
g = g_
|
|
else:
|
|
g = g + g_
|
|
|
|
# forward posterior encoder
|
|
z, m_q, logs_q, y_mask = self.posterior_encoder(feats, feats_lengths, g=g)
|
|
|
|
# forward flow
|
|
z_p = self.flow(z, y_mask, g=g) # (B, H, T_feats)
|
|
|
|
# monotonic alignment search
|
|
with torch.no_grad():
|
|
# negative cross-entropy
|
|
s_p_sq_r = torch.exp(-2 * logs_p) # (B, H, T_text)
|
|
# (B, 1, T_text)
|
|
neg_x_ent_1 = torch.sum(
|
|
-0.5 * math.log(2 * math.pi) - logs_p,
|
|
[1],
|
|
keepdim=True,
|
|
)
|
|
# (B, T_feats, H) x (B, H, T_text) = (B, T_feats, T_text)
|
|
neg_x_ent_2 = torch.matmul(
|
|
-0.5 * (z_p**2).transpose(1, 2),
|
|
s_p_sq_r,
|
|
)
|
|
# (B, T_feats, H) x (B, H, T_text) = (B, T_feats, T_text)
|
|
neg_x_ent_3 = torch.matmul(
|
|
z_p.transpose(1, 2),
|
|
(m_p * s_p_sq_r),
|
|
)
|
|
# (B, 1, T_text)
|
|
neg_x_ent_4 = torch.sum(
|
|
-0.5 * (m_p**2) * s_p_sq_r,
|
|
[1],
|
|
keepdim=True,
|
|
)
|
|
# (B, T_feats, T_text)
|
|
neg_x_ent = neg_x_ent_1 + neg_x_ent_2 + neg_x_ent_3 + neg_x_ent_4
|
|
# (B, 1, T_feats, T_text)
|
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
# monotonic attention weight: (B, 1, T_feats, T_text)
|
|
attn = (
|
|
self.maximum_path(
|
|
neg_x_ent,
|
|
attn_mask.squeeze(1),
|
|
)
|
|
.unsqueeze(1)
|
|
.detach()
|
|
)
|
|
|
|
# forward duration predictor
|
|
w = attn.sum(2) # (B, 1, T_text)
|
|
dur_nll = self.duration_predictor(x, x_mask, w=w, g=g)
|
|
dur_nll = dur_nll / torch.sum(x_mask)
|
|
|
|
# expand the length to match with the feature sequence
|
|
# (B, T_feats, T_text) x (B, T_text, H) -> (B, H, T_feats)
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
|
# (B, T_feats, T_text) x (B, T_text, H) -> (B, H, T_feats)
|
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
|
|
|
# get random segments
|
|
z_segments, z_start_idxs = get_random_segments(
|
|
z,
|
|
feats_lengths,
|
|
self.segment_size,
|
|
)
|
|
|
|
# forward decoder with random segments
|
|
wav = self.decoder(z_segments, g=g)
|
|
|
|
return (
|
|
wav,
|
|
dur_nll,
|
|
attn,
|
|
z_start_idxs,
|
|
x_mask,
|
|
y_mask,
|
|
(z, z_p, m_p, logs_p, m_q, logs_q),
|
|
)
|
|
|
|
def inference(
|
|
self,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
feats: Optional[torch.Tensor] = None,
|
|
feats_lengths: Optional[torch.Tensor] = None,
|
|
sids: Optional[torch.Tensor] = None,
|
|
spembs: Optional[torch.Tensor] = None,
|
|
lids: Optional[torch.Tensor] = None,
|
|
dur: Optional[torch.Tensor] = None,
|
|
noise_scale: float = 0.667,
|
|
noise_scale_dur: float = 0.8,
|
|
alpha: float = 1.0,
|
|
max_len: Optional[int] = None,
|
|
use_teacher_forcing: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Run inference.
|
|
|
|
Args:
|
|
text (Tensor): Input text index tensor (B, T_text,).
|
|
text_lengths (Tensor): Text length tensor (B,).
|
|
feats (Tensor): Feature tensor (B, aux_channels, T_feats,).
|
|
feats_lengths (Tensor): Feature length tensor (B,).
|
|
sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1).
|
|
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
|
|
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
|
|
dur (Optional[Tensor]): Ground-truth duration (B, T_text,). If provided,
|
|
skip the prediction of durations (i.e., teacher forcing).
|
|
noise_scale (float): Noise scale parameter for flow.
|
|
noise_scale_dur (float): Noise scale parameter for duration predictor.
|
|
alpha (float): Alpha parameter to control the speed of generated speech.
|
|
max_len (Optional[int]): Maximum length of acoustic feature sequence.
|
|
use_teacher_forcing (bool): Whether to use teacher forcing.
|
|
|
|
Returns:
|
|
Tensor: Generated waveform tensor (B, T_wav).
|
|
Tensor: Monotonic attention weight tensor (B, T_feats, T_text).
|
|
Tensor: Duration tensor (B, T_text).
|
|
|
|
"""
|
|
# encoder
|
|
x, m_p, logs_p, x_mask = self.text_encoder(text, text_lengths)
|
|
x_mask = x_mask.to(x.dtype)
|
|
g = None
|
|
if self.spks is not None:
|
|
# (B, global_channels, 1)
|
|
g = self.global_emb(sids.view(-1)).unsqueeze(-1)
|
|
if self.spk_embed_dim is not None:
|
|
# (B, global_channels, 1)
|
|
g_ = self.spemb_proj(F.normalize(spembs.unsqueeze(0))).unsqueeze(-1)
|
|
if g is None:
|
|
g = g_
|
|
else:
|
|
g = g + g_
|
|
if self.langs is not None:
|
|
# (B, global_channels, 1)
|
|
g_ = self.lang_emb(lids.view(-1)).unsqueeze(-1)
|
|
if g is None:
|
|
g = g_
|
|
else:
|
|
g = g + g_
|
|
|
|
if use_teacher_forcing:
|
|
# forward posterior encoder
|
|
z, m_q, logs_q, y_mask = self.posterior_encoder(feats, feats_lengths, g=g)
|
|
|
|
# forward flow
|
|
z_p = self.flow(z, y_mask, g=g) # (B, H, T_feats)
|
|
|
|
# monotonic alignment search
|
|
s_p_sq_r = torch.exp(-2 * logs_p) # (B, H, T_text)
|
|
# (B, 1, T_text)
|
|
neg_x_ent_1 = torch.sum(
|
|
-0.5 * math.log(2 * math.pi) - logs_p,
|
|
[1],
|
|
keepdim=True,
|
|
)
|
|
# (B, T_feats, H) x (B, H, T_text) = (B, T_feats, T_text)
|
|
neg_x_ent_2 = torch.matmul(
|
|
-0.5 * (z_p**2).transpose(1, 2),
|
|
s_p_sq_r,
|
|
)
|
|
# (B, T_feats, H) x (B, H, T_text) = (B, T_feats, T_text)
|
|
neg_x_ent_3 = torch.matmul(
|
|
z_p.transpose(1, 2),
|
|
(m_p * s_p_sq_r),
|
|
)
|
|
# (B, 1, T_text)
|
|
neg_x_ent_4 = torch.sum(
|
|
-0.5 * (m_p**2) * s_p_sq_r,
|
|
[1],
|
|
keepdim=True,
|
|
)
|
|
# (B, T_feats, T_text)
|
|
neg_x_ent = neg_x_ent_1 + neg_x_ent_2 + neg_x_ent_3 + neg_x_ent_4
|
|
# (B, 1, T_feats, T_text)
|
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
# monotonic attention weight: (B, 1, T_feats, T_text)
|
|
attn = self.maximum_path(
|
|
neg_x_ent,
|
|
attn_mask.squeeze(1),
|
|
).unsqueeze(1)
|
|
dur = attn.sum(2) # (B, 1, T_text)
|
|
|
|
# forward decoder with random segments
|
|
wav = self.decoder(z * y_mask, g=g)
|
|
else:
|
|
# duration
|
|
if dur is None:
|
|
logw = self.duration_predictor(
|
|
x,
|
|
x_mask,
|
|
g=g,
|
|
inverse=True,
|
|
noise_scale=noise_scale_dur,
|
|
)
|
|
w = torch.exp(logw) * x_mask * alpha
|
|
dur = torch.ceil(w)
|
|
y_lengths = torch.clamp_min(torch.sum(dur, [1, 2]), 1).long()
|
|
y_mask = (~make_pad_mask(y_lengths)).unsqueeze(1).to(text.device)
|
|
y_mask = y_mask.to(x.dtype)
|
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
attn = self._generate_path(dur, attn_mask)
|
|
|
|
# expand the length to match with the feature sequence
|
|
# (B, T_feats, T_text) x (B, T_text, H) -> (B, H, T_feats)
|
|
m_p = torch.matmul(
|
|
attn.squeeze(1),
|
|
m_p.transpose(1, 2),
|
|
).transpose(1, 2)
|
|
# (B, T_feats, T_text) x (B, T_text, H) -> (B, H, T_feats)
|
|
logs_p = torch.matmul(
|
|
attn.squeeze(1),
|
|
logs_p.transpose(1, 2),
|
|
).transpose(1, 2)
|
|
|
|
# decoder
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
|
z = self.flow(z_p, y_mask, g=g, inverse=True)
|
|
wav = self.decoder((z * y_mask)[:, :, :max_len], g=g)
|
|
|
|
return wav.squeeze(1), attn.squeeze(1), dur.squeeze(1)
|
|
|
|
def _generate_path(self, dur: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
|
"""Generate path a.k.a. monotonic attention.
|
|
|
|
Args:
|
|
dur (Tensor): Duration tensor (B, 1, T_text).
|
|
mask (Tensor): Attention mask tensor (B, 1, T_feats, T_text).
|
|
|
|
Returns:
|
|
Tensor: Path tensor (B, 1, T_feats, T_text).
|
|
|
|
"""
|
|
b, _, t_y, t_x = mask.shape
|
|
cum_dur = torch.cumsum(dur, -1)
|
|
cum_dur_flat = cum_dur.view(b * t_x)
|
|
path = torch.arange(t_y, dtype=dur.dtype, device=dur.device)
|
|
path = path.unsqueeze(0) < cum_dur_flat.unsqueeze(1)
|
|
# path = path.view(b, t_x, t_y).to(dtype=mask.dtype)
|
|
path = path.view(b, t_x, t_y).to(dtype=torch.float)
|
|
# path will be like (t_x = 3, t_y = 5):
|
|
# [[[1., 1., 0., 0., 0.], [[[1., 1., 0., 0., 0.],
|
|
# [1., 1., 1., 1., 0.], --> [0., 0., 1., 1., 0.],
|
|
# [1., 1., 1., 1., 1.]]] [0., 0., 0., 0., 1.]]]
|
|
path = path - F.pad(path, [0, 0, 1, 0, 0, 0])[:, :-1]
|
|
# path = path.to(dtype=mask.dtype)
|
|
return path.unsqueeze(1).transpose(2, 3) * mask
|