icefall/egs/ljspeech/TTS/prepare.sh
zr_jin 735fb9a73d
A TTS recipe VITS on VCTK dataset (#1380)
* init

* isort formatted

* minor updates

* Create shared

* Update prepare_tokens_vctk.py

* Update prepare_tokens_vctk.py

* Update prepare_tokens_vctk.py

* Update prepare.sh

* updated

* Update train.py

* Update train.py

* Update tts_datamodule.py

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* fixed formatting issue

* Update infer.py

* removed redundant files

* Create monotonic_align

* removed redundant files

* created symlinks

* Update prepare.sh

* minor adjustments

* Create requirements_tts.txt

* Update requirements_tts.txt

added version constraints

* Update infer.py

* Update infer.py

* Update infer.py

* updated docs

* Update export-onnx.py

* Update export-onnx.py

* Update test_onnx.py

* updated requirements.txt

* Update test_onnx.py

* Update test_onnx.py

* docs updated

* docs fixed

* minor updates
2023-12-06 09:59:19 +08:00

126 lines
4.1 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=0
stop_stage=100
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: build monotonic_align lib"
if [ ! -d vits/monotonic_align/build ]; then
cd vits/monotonic_align
python setup.py build_ext --inplace
cd ../../
else
log "monotonic_align lib already built"
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# The directory $dl_dir/LJSpeech-1.1 will contain:
# - wavs, which contains the audio files
# - metadata.csv, which provides the transcript text for each audio clip
# If you have pre-downloaded it to /path/to/LJSpeech-1.1, you can create a symlink
#
# ln -sfv /path/to/LJSpeech-1.1 $dl_dir/LJSpeech-1.1
#
if [ ! -d $dl_dir/LJSpeech-1.1 ]; then
lhotse download ljspeech $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LJSpeech manifest"
# We assume that you have downloaded the LJSpeech corpus
# to $dl_dir/LJSpeech
mkdir -p data/manifests
if [ ! -e data/manifests/.ljspeech.done ]; then
lhotse prepare ljspeech $dl_dir/LJSpeech-1.1 data/manifests
touch data/manifests/.ljspeech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute spectrogram for LJSpeech"
mkdir -p data/spectrogram
if [ ! -e data/spectrogram/.ljspeech.done ]; then
./local/compute_spectrogram_ljspeech.py
touch data/spectrogram/.ljspeech.done
fi
if [ ! -e data/spectrogram/.ljspeech-validated.done ]; then
log "Validating data/spectrogram for LJSpeech"
python3 ./local/validate_manifest.py \
data/spectrogram/ljspeech_cuts_all.jsonl.gz
touch data/spectrogram/.ljspeech-validated.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare phoneme tokens for LJSpeech"
if [ ! -e data/spectrogram/.ljspeech_with_token.done ]; then
./local/prepare_tokens_ljspeech.py
mv data/spectrogram/ljspeech_cuts_with_tokens_all.jsonl.gz \
data/spectrogram/ljspeech_cuts_all.jsonl.gz
touch data/spectrogram/.ljspeech_with_token.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Split the LJSpeech cuts into train, valid and test sets"
if [ ! -e data/spectrogram/.ljspeech_split.done ]; then
lhotse subset --last 600 \
data/spectrogram/ljspeech_cuts_all.jsonl.gz \
data/spectrogram/ljspeech_cuts_validtest.jsonl.gz
lhotse subset --first 100 \
data/spectrogram/ljspeech_cuts_validtest.jsonl.gz \
data/spectrogram/ljspeech_cuts_valid.jsonl.gz
lhotse subset --last 500 \
data/spectrogram/ljspeech_cuts_validtest.jsonl.gz \
data/spectrogram/ljspeech_cuts_test.jsonl.gz
rm data/spectrogram/ljspeech_cuts_validtest.jsonl.gz
n=$(( $(gunzip -c data/spectrogram/ljspeech_cuts_all.jsonl.gz | wc -l) - 600 ))
lhotse subset --first $n \
data/spectrogram/ljspeech_cuts_all.jsonl.gz \
data/spectrogram/ljspeech_cuts_train.jsonl.gz
touch data/spectrogram/.ljspeech_split.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Generate token file"
# We assume you have installed g2p_en and espnet_tts_frontend.
# If not, please install them with:
# - g2p_en: `pip install g2p_en`, refer to https://github.com/Kyubyong/g2p
# - espnet_tts_frontend, `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
if [ ! -e data/tokens.txt ]; then
./local/prepare_token_file.py \
--manifest-file data/spectrogram/ljspeech_cuts_train.jsonl.gz \
--tokens data/tokens.txt
fi
fi