zr_jin 735fb9a73d
A TTS recipe VITS on VCTK dataset (#1380)
* init

* isort formatted

* minor updates

* Create shared

* Update prepare_tokens_vctk.py

* Update prepare_tokens_vctk.py

* Update prepare_tokens_vctk.py

* Update prepare.sh

* updated

* Update train.py

* Update train.py

* Update tts_datamodule.py

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* Update train.py

* fixed formatting issue

* Update infer.py

* removed redundant files

* Create monotonic_align

* removed redundant files

* created symlinks

* Update prepare.sh

* minor adjustments

* Create requirements_tts.txt

* Update requirements_tts.txt

added version constraints

* Update infer.py

* Update infer.py

* Update infer.py

* updated docs

* Update export-onnx.py

* Update export-onnx.py

* Update test_onnx.py

* updated requirements.txt

* Update test_onnx.py

* Update test_onnx.py

* docs updated

* docs fixed

* minor updates
2023-12-06 09:59:19 +08:00

126 lines
2.7 KiB
ReStructuredText

VITS
===============
This tutorial shows you how to train an VITS model
with the `VCTK <https://datashare.ed.ac.uk/handle/10283/3443>`_ dataset.
.. note::
TTS related recipes require packages in ``requirements-tts.txt``.
.. note::
The VITS paper: `Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech <https://arxiv.org/pdf/2106.06103.pdf>`_
Data preparation
----------------
.. code-block:: bash
$ cd egs/vctk/TTS
$ ./prepare.sh
To run stage 1 to stage 6, use
.. code-block:: bash
$ ./prepare.sh --stage 1 --stop_stage 6
Build Monotonic Alignment Search
--------------------------------
To build the monotonic alignment search, use the following commands:
.. code-block:: bash
$ ./prepare.sh --stage -1 --stop_stage -1
or
.. code-block:: bash
$ cd vits/monotonic_align
$ python setup.py build_ext --inplace
$ cd ../../
Training
--------
.. code-block:: bash
$ export CUDA_VISIBLE_DEVICES="0,1,2,3"
$ ./vits/train.py \
--world-size 4 \
--num-epochs 1000 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir vits/exp \
--tokens data/tokens.txt
--max-duration 350
.. note::
You can adjust the hyper-parameters to control the size of the VITS model and
the training configurations. For more details, please run ``./vits/train.py --help``.
.. note::
The training can take a long time (usually a couple of days).
Training logs, checkpoints and tensorboard logs are saved in ``vits/exp``.
Inference
---------
The inference part uses checkpoints saved by the training part, so you have to run the
training part first. It will save the ground-truth and generated wavs to the directory
``vits/exp/infer/epoch-*/wav``, e.g., ``vits/exp/infer/epoch-1000/wav``.
.. code-block:: bash
$ export CUDA_VISIBLE_DEVICES="0"
$ ./vits/infer.py \
--epoch 1000 \
--exp-dir vits/exp \
--tokens data/tokens.txt \
--max-duration 500
.. note::
For more details, please run ``./vits/infer.py --help``.
Export models
-------------
Currently we only support ONNX model exporting. It will generate two files in the given ``exp-dir``:
``vits-epoch-*.onnx`` and ``vits-epoch-*.int8.onnx``.
.. code-block:: bash
$ ./vits/export-onnx.py \
--epoch 1000 \
--exp-dir vits/exp \
--tokens data/tokens.txt
You can test the exported ONNX model with:
.. code-block:: bash
$ ./vits/test_onnx.py \
--model-filename vits/exp/vits-epoch-1000.onnx \
--tokens data/tokens.txt
Download pretrained models
--------------------------
If you don't want to train from scratch, you can download the pretrained models
by visiting the following link:
- `<https://huggingface.co/zrjin/icefall-tts-vctk-vits-2023-12-05>`_